An increasing number of scanning-probe-based spectroscopic techniques provides access to diverse electronic properties of single molecules. Typically, these experiments can only study a subset of all electronic transitions, which obscures the unambiguous assignment of measured quantities to specific quantum transitions. Here we develop a single-molecule spectroscopy that enables the access to many quantum transitions of different types, including radiative, non-radiative and redox, that is, charge-related, transitions.
View Article and Find Full Text PDFUnderstanding and controlling decoherence in open quantum systems is of fundamental interest in science, whereas achieving long coherence times is critical for quantum information processing. Although great progress was made for individual systems, and electron spin resonance (ESR) of single spins with nanoscale resolution has been demonstrated, the understanding of decoherence in many complex solid-state quantum systems requires ultimately controlling the environment down to atomic scales, as potentially enabled by scanning probe microscopy with its atomic and molecular characterization and manipulation capabilities. Consequently, the recent implementation of ESR in scanning tunnelling microscopy represents a milestone towards this goal and was quickly followed by the demonstration of coherent oscillations and access to nuclear spins with real-space atomic resolution.
View Article and Find Full Text PDFThe scope of non-hydrogenative parahydrogen hyperpolarization (nhPHIP) techniques has been expanding over the last years, with the continuous addition of important classes of substrates. For example, pyruvate can now be hyperpolarized using the Signal Amplification By Reversible Exchange (SABRE) technique, offering a fast, efficient and low-cost PHIP alternative to Dynamic Nuclear Polarization for metabolic imaging studies. Still, important biomolecules such as amino acids have so far resisted PHIP, unless properly functionalized.
View Article and Find Full Text PDFNon-hydrogenative para-hydrogen-induced polarization (PHIP) is a fast, efficient and relatively inexpensive approach to enhance nuclear magnetic resonance (NMR) signals of small molecules in solution. The efficiency of this technique depends on the interplay of NMR relaxation and kinetic processes, which, at high concentrations, can be characterized by selective inversion experiments. However, in the case of dilute solutions this approach is clearly not viable.
View Article and Find Full Text PDFAn NMR approach based on parahydrogen hyperpolarization is presented to detect and resolve specific classes of metabolites in complex biomixtures at down to nanomolar concentrations. We demonstrate our method on solid phase extracts of urine, by simultaneously observing hundreds of metabolites well below the limits of detection of thermal NMR.
View Article and Find Full Text PDF