The collective behavior of animal groups emerges from the interactions among individuals. These social interactions produce the coordinated movements of bird flocks and fish schools, but little is known about their developmental emergence and neurobiological foundations. By characterizing the visually based schooling behavior of the micro glassfish Danionella cerebrum, we found that social development progresses sequentially, with animals first acquiring the ability to aggregate, followed by postural alignment with social partners.
View Article and Find Full Text PDFMotion is the basis of nearly all animal behavior. Evolution has led to some extraordinary specializations of propulsion mechanisms among invertebrates, including the mandibles of the dracula ant and the claw of the pistol shrimp. In contrast, vertebrate skeletal movement is considered to be limited by the speed of muscle, saturating around 250 Hz.
View Article and Find Full Text PDFMany animals move in groups, where collective behavior emerges from the interactions amongst individuals. These social interactions produce the coordinated movements of bird flocks and fish schools, but little is known about their developmental emergence and neurobiological foundations. By characterizing the visually-based schooling behavior of the micro glassfish , here we found that social development progresses sequentially, with animals first acquiring the ability to aggregate, followed by postural alignment with social partners.
View Article and Find Full Text PDFThe integration of large-scale gene expression mapping into a multifaceted larval zebrafish brain atlas accelerates the characterization of neurons in behaviorally relevant circuits.
View Article and Find Full Text PDFStudying neuronal circuits at cellular resolution is very challenging in vertebrates due to the size and optical turbidity of their brains. Danionella translucida, a close relative of zebrafish, was recently introduced as a model organism for investigating neural network interactions in adult individuals. Danionella remains transparent throughout its life, has the smallest known vertebrate brain and possesses a rich repertoire of complex behaviours.
View Article and Find Full Text PDFThe version of this paper originally published contained errors in reference citations: in the first paragraph of the Results section, the text "This extent of optical clarity probably results from the absence of skull above the brain. In our specimens, Nissl-stained coronal sections through the head showed that the skull surrounds the brain only laterally and ventrally" should have read "This extent of optical clarity probably results from the absence of skull above the brain. In our specimens, Nissl-stained coronal sections through the head showed that the skull surrounds the brain only laterally and ventrally.
View Article and Find Full Text PDFUnderstanding how distributed neuronal circuits integrate sensory information and generate behavior is a central goal of neuroscience. However, it has been difficult to study neuronal networks at single-cell resolution across the entire adult brain in vertebrates because of their size and opacity. We address this challenge here by introducing the fish Danionella translucida to neuroscience as a potential model organism.
View Article and Find Full Text PDFTranslocations are chromosomal rearrangements that are frequently associated with a variety of disease states and developmental disorders. We identified 2 families with brachydactyly type E (BDE) resulting from different translocations affecting chromosome 12p. Both translocations caused downregulation of the parathyroid hormone-like hormone (PTHLH) gene by disrupting the cis-regulatory landscape.
View Article and Find Full Text PDF