Publications by authors named "Lisanne E Wisse"

(1) Mesenchymal stem cells (MSCs) are a valuable cell model to study the bone pathology of Osteogenesis Imperfecta (OI), a rare genetic collagen-related disorder characterized by bone fragility and skeletal dysplasia. We aimed to generate a novel OI induced mesenchymal stem cell (iMSC) model from induced pluripotent stem cells (iPSCs) derived from human dermal fibroblasts. For the first time, OI iMSCs generation was based on an intermediate neural crest cell (iNCC) stage.

View Article and Find Full Text PDF

Introduction: Osteogenesis Imperfecta is a rare genetic connective tissue disorder, characterized by skeletal dysplasia and fragile bones. Currently only two mouse models have been reported for haploinsufficient (HI) mild Osteogenesis Imperfecta (OI); the (Mov13) and the mouse model. The Mov13 mice were created by random insertion of the Mouse Moloney leukemia virus in the first intron of the gene, preventing the initiation of transcription.

View Article and Find Full Text PDF

Fibrodysplasia ossificans progressiva (FOP) is a catastrophic, ultra-rare disease of heterotopic ossification caused by genetic defects in the gene. The mutant ACVR1 receptor, when triggered by an inflammatory process, leads to heterotopic ossification of the muscles and ligaments. Activin A has been discovered as the main osteogenic ligand of the FOP ACVR1 receptor.

View Article and Find Full Text PDF

Background: Vanishing white matter (VWM) is a leukodystrophy, caused by recessive mutations in eukaryotic initiation factor 2B (eIF2B)-subunit genes (EIF2B1-EIF2B5); 80% are missense mutations. Clinical severity is highly variable, with a strong, unexplained genotype-phenotype correlation.

Materials And Methods: With information from a recent natural history study, we severity-graded 97 missense mutations.

View Article and Find Full Text PDF

Vanishing white matter (VWM) is a genetic brain white matter disorder caused by mutations in eIF2B. eIF2B is central in the integrated stress response (ISR), during which its activity is inhibited by various cellular stresses. VWM is a chronic progressive disease with episodes of rapid neurological deterioration provoked by stresses.

View Article and Find Full Text PDF

Objective: Vanishing white matter (VWM) is a fatal, stress-sensitive leukodystrophy that mainly affects children and is currently without treatment. VWM is caused by recessive mutations in eukaryotic initiation factor 2B (eIF2B) that is crucial for initiation of mRNA translation and its regulation during the integrated stress response (ISR). Mutations reduce eIF2B activity.

View Article and Find Full Text PDF
Article Synopsis
  • Vanishing white matter (VWM) is a severe genetic disorder in children, leading to neurological decline and often resulting in death within a few years after symptoms appear.
  • The disease stems from mutations in the eIF2B gene, which is crucial for regulating protein synthesis in cells.
  • A study using a mouse model of VWM investigated whether the astrocytes (a type of brain cell) in these mice showed an exaggerated response to stress, but results indicated that these cells did not exhibit a hyperactive stress response as initially hypothesized.
View Article and Find Full Text PDF

Vanishing white matter (VWM) is a leukodystrophy with predominantly early-childhood onset. Affected children display various neurological signs, including ataxia and spasticity, and die early. VWM patients have bi-allelic mutations in any of the five genes encoding the subunits of the eukaryotic translation factor 2B (eIF2B).

View Article and Find Full Text PDF
Article Synopsis
  • Vanishing white matter (VWM) is a lethal leukodystrophy caused by mutations in genes related to the translation initiation factor eIF2B, with disease severity influenced by genotype.
  • Research using mouse models and patient tissue revealed that abnormal maturation of white matter astrocytes occurs before the disease develops and correlates with its severity.
  • The study indicates that astrocytes play a crucial role in VWM progression and suggests they could be targeted for potential therapies, also highlighting their significance in other white matter disorders.
View Article and Find Full Text PDF

The highly variable extracellular loops in G protein-coupled receptors (GPCRs) have been implicated in receptor activation, the mechanism of which is poorly understood. In a random mutagenesis screen on the human adenosine A(2B) receptor (A(2B)R) using the MMY24 Saccharomyces cerevisiae strain as a read-out system, we found that two residues in the first extracellular loop, a phenylalanine and an aspartic acid at positions 71 and 74, respectively, are involved in receptor activation. We subsequently performed further site-directed and site-saturation mutagenesis.

View Article and Find Full Text PDF