How a neuron becomes polarized remains largely unknown. Results obtained with a function-blocking antibody and an siRNA targeting the insulin-like growth factor-1 (IGF-1) receptor suggest that an essential step in the establishment of hippocampal neuronal polarity and the initiation of axonal outgrowth is the activation of the phosphatidylinositol 3-kinase (PI3k)-Cdc42 pathway by the IGF-1 receptor, but not by the TrkA or TrkB receptors.
View Article and Find Full Text PDFExocytotic incorporation of plasmalemmal precursor vesicles (PPVs) into the cell surface is necessary for axonal outgrowth and is known to occur mainly at the nerve growth cone. We have demonstrated recently that plasmalemmal expansion is regulated at the growth cone by IGF-1, but not by BDNF, in a manner that is quasi independent of the neuron's perikaryon. To begin elucidating the signaling pathway by which exocytosis of the plasmalemmal precursor is regulated, we studied activation of the IRS/PI3K/Akt pathway in isolated growth cones and hippocampal neurons in culture stimulated with IGF-1 or BDNF.
View Article and Find Full Text PDFExocytotic incorporation of plasmalemmal precursor vesicles (PPVs) into the cell surface is necessary for neurite extension and is known to occur mainly at the growth cone. This report examines whether this is a regulated event controlled by growth factors. The Golgi complex and nascent PPVs of hippocampal neurons in culture were pulse-labeled with fluorescent ceramide.
View Article and Find Full Text PDF