The morphology or dispersion control in inorganic/organic hybrid systems is studied, which consist of monodisperse CdSe tetrapods (TPs) with grafted semiconducting block copolymers with excess polymers of the same type. Tetrapod arm-length and amount of polymer loading are varied in order to find the ideal morphology for hybrid solar cells. Additionally, polymers without anchor groups are mixed with the TPs to study the effect of such anchor groups on the hybrid morphology.
View Article and Find Full Text PDFThe synthesis and self-assembly of novel semiconducting rod-coil type graft block copolymers based on poly(para-phenylene vinylene) (PPV) copolymers is presented, focusing on the ordering effect of linear versus hyperbranched side chains. Using an additional reactive ester block, highly polar, linear poly(ethylene glycol), and hyperbranched polyglycerol side chains are attached in a grafting-to approach. Remarkably, the resulting novel semiconducting graft copolymers with polyether side chains show different solubility and side-chain directed self-assembly behavior in various solvents, e.
View Article and Find Full Text PDFThe electrochemical coupling and dimerization behavior of the low molecular compounds triphenylamine (TPA) and 9-phenylcarbazole (PHC) in comparison to tri-p-tolylamine (p-TTA) with para-blocked methyl groups has been investigated in detail. In contrast to the unsubstituted radical cations of TPA and PHC, the radical cations of p-TTA are stable in the radical cation state and do not undergo any further coupling reactions. However, we found that the dicationic state of p-TTA does undergo two different competitive reaction pathways: (1) an irreversible intramolecular coupling reaction which leads to phenylcarbazole moieties and (2) a reversible intermolecular dimerization leading to charged σ-dimers.
View Article and Find Full Text PDF