Publications by authors named "Lisa U Magnusson"

Current research on metabolic disorders and diabetes relies on animal models because multi-organ diseases cannot be well studied with standard in vitro assays. Here, we have connected cell models of key metabolic organs, the pancreas and liver, on a microfluidic chip to enable diabetes research in a human-based in vitro system. Aided by mechanistic mathematical modeling, we demonstrate that hyperglycemia and high cortisone concentration induce glucose dysregulation in the pancreas-liver microphysiological system (MPS), mimicking a diabetic phenotype seen in patients with glucocorticoid-induced diabetes.

View Article and Find Full Text PDF

Background: Tasquinimod (ABR-215050) is an orally active quinoline-3-carboxamide analog that inhibits occurrence of experimental metastasis and delays disease progression of castration resistant prostate cancer in humans. Its mechanism of action is not fully elucidated, but previous studies show immunomodulatory and anti-angiogenic effects. The aim of the present study was to investigate the tumor inhibiting effect of tasquinimod in bone of castrated mice as well as to elucidate its working mechanism related to bone microenvironment.

View Article and Find Full Text PDF

Inflammation in the vascular wall is important for the development of atherosclerosis. We have previously shown that inflammatory macrophages are more abundant in human atherosclerotic lesions than in healthy arteries. Activated macrophages produce reactive oxygen species (ROS) that promote local inflammation in atherosclerotic lesions.

View Article and Find Full Text PDF

CD14 is a predictor of inflammation and associated with atherosclerosis. We analyzed 118 carotid plaques from patients with symptomatic carotid artery stenosis for expression of the macrophage markers CD14, CD68 and the angiotensin II type 1 receptor (AT1-R). CD14 staining was significantly increased in thrombotic carotid plaques.

View Article and Find Full Text PDF

Inflammation in the vascular wall is important for development of atherosclerosis. We have shown previously that arachidonate 15-lipoxygenase type B (ALOX15B) is more highly expressed in human atherosclerotic lesions than in healthy arteries. This enzyme oxidizes fatty acids to substances that promote local inflammation and is expressed in lipid-loaded macrophages (foam cells) present in the atherosclerotic lesions.

View Article and Find Full Text PDF

Atherosclerotic lesions are characterized by lipid-loaded macrophages (foam cells) and hypoxic regions. Although it is well established that foam cells are produced by uptake of cholesterol from oxidized LDL, we previously showed that hypoxia also promotes foam cell formation even in the absence of exogenous lipids. The hypoxia-induced lipid accumulation results from increased triglyceride biosynthesis but the exact mechanism is unknown.

View Article and Find Full Text PDF

A common feature of the ischemic heart and atherosclerotic plaques is the presence of hypoxia (insufficient levels of oxygen in the tissue). Hypoxia has pronounced effects on almost every aspect of cell physiology, and the nuclear transcription factor hypoxia inducible factor-1α (HIF-1α) regulates adaptive responses to low concentrations of oxygen in mammalian cells. In our recent work, we observed that hypoxia increases the proinflammatory enzyme arachidonate 15-lipoxygenase (ALOX15B) in human carotid plaques.

View Article and Find Full Text PDF

Nutritionally induced changes in RNA polymerase availability have been hypothesized to be an evolutionary primeval mechanism for regulation of gene expression and several contrasting models have been proposed to explain how such 'passive' regulation might occur. We demonstrate here that ectopically elevating Escherichia coli RNA polymerase (Esigma(70)) levels causes an increased expression and promoter occupancy of ribosomal genes at the expense of stress-defense genes and amino acid biosynthetic operons. Phenotypically, cells overproducing Esigma(70) favours growth and reproduction at the expense of motility and damage protection; a response reminiscent of cells with no or diminished levels of the alarmone guanosine tetraphosphate (ppGpp).

View Article and Find Full Text PDF

The recent discovery that the protein DksA acts as a coregulator of genes controlled by ppGpp led us to investigate the similarities and differences between the relaxed phenotype of a ppGpp-deficient mutant and the phenotype of a strain lacking DksA. We demonstrate that the absence of DksA and ppGpp has similar effects on many of the observed phenotypes but that DksA and ppGpp also have independent and sometimes opposing roles in the cell. Specifically, we show that overexpression of DksA can compensate for the loss of ppGpp with respect to transcription of the promoters P(uspA), P(livJ), and P(rrnBP1) as well as amino acid auxotrophy, cell-cell aggregation, motility, filamentation, and stationary phase morphology, suggesting that DksA can function without ppGpp in regulating gene expression.

View Article and Find Full Text PDF

The small nucleotide ppGpp acts as a global regulator of gene expression in bacteria. Proteomic analysis of cells lacking ppGpp has shown that this nucleotide might affect many more genes than previously anticipated. These findings and others suggest that ppGpp causes a redirection of transcription so that genes important for starvation survival and virulence are favoured at the expense of those required for growth and proliferation.

View Article and Find Full Text PDF

When Escherichia coli cells enter stationary phase due to carbon starvation the synthesis of ribosomal proteins is rapidly repressed. In a DeltarelA DeltaspoT mutant, defective in the production of the alarmone guanosine tetraphosphate (ppGpp), this regulation of the levels of the protein synthesizing system is abolished. Using a proteomic approach we demonstrate that the production of the vast majority of detected E.

View Article and Find Full Text PDF