As the power electronics landscape evolves, pushing for greater vertical integration, capillary underfilling is considered a versatile encapsulation technique suited for iterative development cycles of innovative integration concepts. Since a defect-free application is critical, this study proposes a capillary two-phase flow simulation, predicting both the flow pattern and velocity with remarkable precision and efficiency. In a preliminary performance evaluation, Volume of Fluid (VOF) outperforms the Level-Set method in terms of accuracy and computation time.
View Article and Find Full Text PDFPurpose: Magnetic resonance elastography (MRE) maps the viscoelastic properties of soft tissues for diagnostic purposes. However, different MRE inversion methods yield different results, which hinder comparison of values, standardization, and establishment of quantitative MRE markers. Here, we introduce an expandable, open-access, webserver-based platform that offers multiple inversion techniques for multifrequency, 3D MRE data.
View Article and Find Full Text PDFPurpose: With abdominal magnetic resonance elastography (MRE) often suffering from breathing artifacts, it is recommended to perform MRE during breath-hold. However, breath-hold acquisition prohibits extended multifrequency MRE examinations and yields inconsistent results when patients cannot hold their breath. The purpose of this work was to analyze free-breathing strategies in multifrequency MRE of abdominal organs.
View Article and Find Full Text PDFPatients with increased liver stiffness have a higher risk of developing cancer, however, the role of fluid-solid tissue interactions and their contribution to liver tumor malignancy remains elusive. Tomoelastography is a novel imaging method for mapping quantitatively the solid-fluid tissue properties of soft tissues . It provides high resolution and thus has clear clinical applications.
View Article and Find Full Text PDF