The Earth's magnetic field can provide reliable directional information, allowing migrating animals to orient themselves using a magnetic compass or estimate their position relative to a target using map-based orientation. Here we show for the first time that young, inexperienced herring (, Ch) have a magnetic compass when they migrate hundreds of kilometres to their feeding grounds. In birds, such as the European robin (), radical pair-based magnetoreception involving cryptochrome 4 (ErCRY4) was demonstrated; the molecular basis of magnetoreception in fish is still elusive.
View Article and Find Full Text PDFSprat (Sprattus sprattus) is one of the most commercially exploited fish species in the Baltic Sea and expresses a pronounced seasonal migration pattern. Spawning takes place, among other places, in the Kiel Bight and Kiel Fjord in early summer. Juvenile sprat leave the nursery areas in late summer/early autumn to move to their feeding and overwintering grounds.
View Article and Find Full Text PDFMillions of minute, newly hatched coral reef fish larvae get carried into the open ocean by highly complex and variable currents. To survive, they must return to a suitable reef habitat within a species-specific time. Strikingly, previous studies have demonstrated that return to home reefs is much more frequent than would be expected by chance.
View Article and Find Full Text PDFAtlantic herring (Clupea harengus), an ecologically and economically important species in the northern hemisphere, shows pronounced seasonal migratory behaviour. To follow distinctive migration patterns over hundreds of kilometers between feeding, overwintering and spawning grounds, they are probably guided by orientation mechanisms. We tested whether juvenile spring-spawning Atlantic herring, caught in the western Baltic, use a sun compass for orientation just before they start leaving their hatching area.
View Article and Find Full Text PDFBackground: Long-term hematopoietic stem cells (LT-HSCs) reside in bone marrow niches with tightly controlled reactive oxygen species (ROS) levels. ROS increase results into LT-HSC differentiation and stem cell exhaustion. Paraoxonase 2 (PON2) has been shown to be important for ROS control.
View Article and Find Full Text PDFPreclinical research using different rodent model systems has largely contributed to the scientific progress in the pain field, however, it suffers from interspecies differences, limited access to human models, and ethical concerns. Human induced pluripotent stem cells (iPSCs) offer major advantages over animal models, i.e.
View Article and Find Full Text PDFNumerous experimental studies demonstrate that the Ras homolog family of guanosine triphosphate hydrolases (Rho GTPases) Ras homolog family member A (RhoA), Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division cycle 42 (Cdc42) are important regulators in somatosensory neurons, where they elicit changes in the cellular cytoskeleton and are involved in diverse biological processes during development, differentiation, survival and regeneration. This review summarizes the status of research regarding the expression and the role of the Rho GTPases in peripheral sensory neurons and how these small proteins are involved in development and outgrowth of sensory neurons, as well as in neuronal regeneration after injury, inflammation and pain perception. In sensory neurons, Rho GTPases are activated by various extracellular signals through membrane receptors and elicit their action through a wide range of downstream effectors, such as Rho-associated protein kinase (ROCK), phosphoinositide 3-kinase (PI3K) or mixed-lineage kinase (MLK).
View Article and Find Full Text PDFRhogocytes, also termed "pore cells", occur as solitary or clustered cells in the connective tissue of gastropod molluscs. Rhogocytes possess an enveloping lamina of extracellular matrix and enigmatic extracellular lacunae bridged by cytoplasmic bars that form 20 nm diaphragmatic slits likely to act as a molecular sieve. Recent papers highlight the embryogenesis and ultrastructure of these cells, and their role in heavy metal detoxification.
View Article and Find Full Text PDF