Copper chaperones of the ATX1 family are found in a wide range of organisms where these essential soluble carriers strictly control the transport of monovalent copper across the cytoplasm to various targets in diverse cellular compartments thereby preventing detrimental radical formation catalyzed by the free metal ion. Notably, the ATX1 family in plants contains two distinct forms of the cellular copper carrier. In addition to ATX1 having orthologs in other species, they also contain the copper chaperone CCH.
View Article and Find Full Text PDFCyclotide-induced membrane disruption is studied at the microsecond timescale by dissipative particle dynamics to quantitatively estimate a kinetic rate constant for membrane lipid extraction with a ″sandwich″ interaction model where two bilayer membranes enclose a cyclotide/water compartment. The obtained bioactivity trends for cyclotides Kalata B1, Cycloviolacin O2, and selected mutants with different membrane types are in agreement with experimental findings: For all membranes investigated, Cycloviolacin O2 shows a higher lipid extraction activity than Kalata B1. The presence of cholesterol leads to a decreased cyclotide activity compared to cholesterol-free membranes.
View Article and Find Full Text PDF