DNA and RNA sequencing technologies have revolutionized biology and biomedical sciences, sequencing full genomes and transcriptomes at very high speeds and reasonably low costs. RNA sequencing (RNA-Seq) enables transcript identification and quantification, but once sequencing has concluded researchers can be easily overwhelmed with questions such as how to go from raw data to differential expression (DE), pathway analysis and interpretation. Several pipelines and procedures have been developed to this effect.
View Article and Find Full Text PDFCancer cell plasticity due to the dynamic architecture of interactome networks provides a vexing outlet for therapy evasion. Here, through chemical biology approaches for systems level exploration of protein connectivity changes applied to pancreatic cancer cell lines, patient biospecimens, and cell- and patient-derived xenografts in mice, we demonstrate interactomes can be re-engineered for vulnerability. By manipulating epichaperomes pharmacologically, we control and anticipate how thousands of proteins interact in real-time within tumours.
View Article and Find Full Text PDFProtein samples electroblotted onto nitrocellulose membranes and quenched with a mixture of blocking agents produced a strong signal for cystic fibrosis transmembrane-conductance regulator (CFTR), a high-molecular-weight protein, in western blotting. Optimized conditions for CFTR were then extended to medium- and low-molecular-weight proteins (LAMP1 and Rab11a, respectively) to determine the effects of methanol concentration (0-20%) in Towbin's transfer buffer (TTB). Methanol in TTB appears to have little to no effect on CFTR signal.
View Article and Find Full Text PDF