Publications by authors named "Lisa Rothwell"

In mammals, the role of interleukin-18 (IL-18) in the immune response is to drive inflammatory and, normally therefore, anti-viral responses. IL-18 also shows promise as a vaccine adjuvant in mammals. Chicken IL-18 (chIL-18) has been cloned.

View Article and Find Full Text PDF

Campylobacter is the leading cause of bacterial foodborne gastroenteritis worldwide. Handling or consumption of contaminated poultry meat is a key risk factor for human campylobacteriosis. One potential control strategy is to select poultry with increased resistance to Campylobacter.

View Article and Find Full Text PDF

Campylobacter is the leading bacterial cause of foodborne diarrheal illness in humans and source attribution studies unequivocally identify handling or consumption of poultry meat as a key risk factor. Campylobacter colonizes the avian intestines in high numbers and rapidly spreads within flocks. A need therefore exists to devise strategies to reduce Campylobacter populations in poultry flocks.

View Article and Find Full Text PDF

Chicken anaemia virus (CAV) is a lymphotropic virus that causes anaemia and immunosuppression in chickens. Previously, we proposed that CAV evades host antiviral responses by disrupting T-cell signalling, but the precise cellular targets and modes of action remain elusive. In this study, we examined gene expression in Marek's disease virus-transformed chicken T-cell line MSB-1 after infection with CAV using both a custom 5K immune-focused microarray and quantitative real-time PCR at 24, 48 and 72 h post-infection.

View Article and Find Full Text PDF

In mammals, the inducible cytokine interleukin 10 is a feedback negative regulator of inflammation. To determine the extent to which this function is conserved in birds, recombinant chicken IL-10 was expressed as a secreted human Ig Fc fusion protein (chIL-10-Fc) and used to immunise mice. Five monoclonal antibodies (mAb) which specifically recognise chicken IL-10 were generated and characterised.

View Article and Find Full Text PDF

Development of process orientated understanding of cytokine interactions within the gastrointestinal tract during an immune response to pathogens requires experimentation and statistical modelling. The immune response against pathogen challenge depends on the specific threat to the host. Here, we show that broiler chickens mount a breed-dependent immune response to Campylobacter jejuni infection in the caeca by analysing experimental data using frequentist and Bayesian structural equation models (SEM).

View Article and Find Full Text PDF

T-cell immunoglobulin and mucin (TIM) family molecules are cell membrane proteins, preferentially expressed on various immune cells and implicated in recognition and clearance of apoptotic cells. Little is known of their function outside human and mouse, and nothing outside mammals. We identified only two TIM genes (chTIM) in the chicken genome, putative orthologues of mammalian TIM1 and TIM4, and cloned the respective cDNAs.

View Article and Find Full Text PDF
Article Synopsis
  • - Chicken Anaemia Virus (CAV) severely impacts poultry by infecting key immune cells, leading to immunosuppression, and this study aimed to explore how CAV affects the host immune response.
  • - Researchers infected day-old chicks with CAV to analyze cytokine levels and gene expression at different stages post-infection, revealing a weak innate immune response and a lack of expected Th1 adaptive immune reaction in lymphoid tissues.
  • - Gene expression analysis indicated that CAV infection resulted in significant changes mainly linked to T-cell receptor signaling and immune regulation, with down-regulation of certain adaptor proteins that may play a role in the immune response to the virus.
View Article and Find Full Text PDF

Macrophages contribute to innate and acquired immunity as well as many aspects of homeostasis and development. Studies of macrophage biology and function in birds have been hampered by a lack of definitive cell surface markers. As in mammals, avian macrophages proliferate and differentiate in response to CSF1 and IL34, acting through the shared receptor, CSF1R.

View Article and Find Full Text PDF

In chickens, the nematode Ascaridia galli is found with prevalences of up to 100% causing economic losses to farmers. No avian nematode vaccines have yet been developed and detailed knowledge about the chicken immune response towards A. galli is therefore of great importance.

View Article and Find Full Text PDF

The cDNAs of two turkey cytokines, interleukin (IL)-10 and IL-13, were cloned using oligonucleotide primers designed from their chicken orthologues. The coding regions of the chicken and turkey genes are highly conserved, with IL-10 and IL-13 exhibiting 94.1% and 90% nucleotide and 92% and 79.

View Article and Find Full Text PDF
Article Synopsis
  • Interleukin-21 (IL-21) is an important cytokine in mammals that regulates immune cell functions, and a chicken version (chIL-21) was identified from activated chicken immune cells.
  • The chIL-21 gene is 438 nucleotides long, encoding a protein of 145 amino acids, which shares 20-30% similarity with mammalian IL-21, but is more similar (50-80%) within bird species.
  • The structure and function of chicken IL-21 mirror those of mammals, as it enhances T-cell proliferation and inhibits dendritic cell maturation, similar to its mammalian counterpart.
View Article and Find Full Text PDF

Chlamydophila (Cp.) psittaci and avian pathogenic Escherichia (E.) coli infections contribute to the respiratory disease complex observed in turkeys.

View Article and Find Full Text PDF

Dendritic cells (DCs) are bone marrow-derived professional antigen-presenting cells. The in vitro generation of DCs from either bone marrow or blood is routine in mammals. Their distinct morphology and phenotype and their unique ability to stimulate naïve T cells are used to define DCs.

View Article and Find Full Text PDF

Interleukin-7 (IL-7) is a central regulator of T cell survival and homeostasis and its expression is indicative for naïve and memory T cells. We cloned chicken IL-7Ralpha (CHIL-7Ralpha) and determined its expression profile in chicken lymphocyte subpopulations. The predicted protein sequence contained 460 amino acids.

View Article and Find Full Text PDF

In the current study whole poultry red mite antigens were extracted and birds were immunized subcutaneously with either antigen in adjuvant (antigen group) or PBS in adjuvant (control group). Immune responses of birds following immunization were investigated by ELISA and Western blotting, while vaccine efficacy was assessed by feeding of red mites on birds. Immunized birds showed a significant (P < 0.

View Article and Find Full Text PDF

The cDNAs of three turkey CD markers, CD4, CD8alpha and CD28, were identified by screening a turkey cDNA library. The coding regions of the chicken and turkey genes are highly conserved, with 91.3-96.

View Article and Find Full Text PDF

Despite occupying the same habitats as mammals, having similar ranges of body mass and longevity, and facing similar pathogen challenges, birds have a different repertoire of organs, cells, molecules and genes of the immune system when compared to mammals. In other words, birds are not "mice with feathers", at least not in terms of their immune systems. Here we discuss differences between immune gene repertoires of birds and mammals, particularly those known to play a role in immune-endocrine interactions in mammals.

View Article and Find Full Text PDF

A cDNA encoding the chicken homologue of the human myelomonocytic differentiation antigen, CD14, was cloned by RT-PCR from chicken bone marrow cell RNA, using oligonucleotide primers based on the predicted cDNA sequence. The cloned chicken CD14 (chCD14) cDNA encodes an open reading frame of 465 amino acids (aa), with 31-34% aa identity to mouse, bovine and human (hu) CD14. As in mouse and man, chCD14 is a leucine-rich protein.

View Article and Find Full Text PDF

Campylobacter jejuni is a major cause of human inflammatory enteritis, but colonizes the gastrointestinal tract of poultry to a high level in a commensal manner. In vitro, C. jejuni induces the production of cytokines from both human and avian-model epithelial cell and macrophage infections.

View Article and Find Full Text PDF

The avian coronavirus infectious bronchitis virus (IBV) is a major economic pathogen of domestic poultry that, despite vaccination, causes mortality and significant losses in production. During replication of the RNA genome there is a high frequency of mutation and recombination, which has given rise to many strains of IBV and results in the potential for new and emerging strains. Currently the live-attenuated vaccine gives poor cross-strain immunity.

View Article and Find Full Text PDF

The positive strand RNA coronavirus, infectious bronchitis virus (IBV), induces a G2/M phase arrest and reduction in the G1 and G1/S phase transition regulator cyclin D1. Quantitative real-time RT-PCR and Western blot analysis demonstrated that cyclin D1 was reduced post-transcriptionally within infected cells independently of the cell-cycle stage at the time of infection. Confocal microscopy revealed that cyclin D1 decreased in IBV-infected cells as infection progressed and inhibition studies indicated that a population of cyclin D1 could be targeted for degradation by a virus mediated pathway.

View Article and Find Full Text PDF

Previously we demonstrated that increased in-vitro heterophil function translates to increased in-vivo resistance to Salmonella enteritidis infections in broilers (line A > B). Heterophils produce cytokines and modulate acute protection against Salmonella in neonatal poultry. We hypothesized that heterophils from S.

View Article and Find Full Text PDF

Little is understood about the immune responses involved in the pathogenesis of infectious bursal disease virus (IBDV). Strains of IBDV differ in their virulence: F52/70 is a classical virulent strain (vIBDV), whereas UK661 is a very virulent strain (vvIBDV) that causes greater pathology and earlier mortality. The exact causes of clinical disease and death are still unclear.

View Article and Find Full Text PDF

Macrophages from inbred chickens that are resistant to salmonellosis show greater and more rapid expression of proinflammatory chemokines and cytokines, including the key Th1-inducing cytokine interleukin-18, upon Salmonella challenge than those from susceptible birds. This suggests the possibility that salmonellosis resistant-line macrophages signal more effectively and rapidly and are more able to induce protective Th1 adaptive responses.

View Article and Find Full Text PDF