Studies reported a strong impact on mental health during the first wave of the COVID-19 pandemic in March-June, 2020. In this study, we assessed the impact of the pandemic on mental health in general and on schizotypal traits in two independent general population samples of the United Kingdom (May sample N: 239, October sample N: 126; participation at both timepoints: 21) and in two independent general population samples of Germany (May sample N: 543, October sample N: 401; participation at both timepoints: 100) using online surveys. Whereas general psychological symptoms (global symptom index, GSI) and percentage of responders above clinical cut-off for further psychological investigation were higher in the May sample compared to the October sample, schizotypy scores (Schizotypal Personality Questionnaire) were higher in the October sample.
View Article and Find Full Text PDFBackground: The COVID-19 pandemic has led to dramatic social and economic changes in daily life. First studies report an impact on mental health of the general population showing increased levels of anxiety, stress and depression. In this study, we compared the impact of the pandemic on two culturally and economically similar European countries: the UK and Germany.
View Article and Find Full Text PDFAgeing is commonly associated with changes to segregation and integration of functional brain networks, but, in isolation, current network-based approaches struggle to elucidate changes across the many axes of functional organisation. However, the advent of gradient mapping techniques in neuroimaging provides a new means of studying functional organisation in a multi-dimensional connectivity space. Here, we studied ageing and behaviourally-relevant differences in a three-dimensional connectivity space using the Cambridge Centre for Ageing Neuroscience cohort (n = 643).
View Article and Find Full Text PDFThe development of executive function is linked to maturation of prefrontal cortex (PFC) in childhood. Childhood obesity has been associated with changes in brain structure, particularly in PFC, as well as deficits in executive functions. We aimed to determine whether differences in cortical structure mediate the relationship between executive function and childhood obesity.
View Article and Find Full Text PDFBackground: While gross measures of brain structure have shown alterations with increasing body mass index (BMI), the extent and nature of such changes has varied substantially across studies. Here, we sought to determine whether small-scale morphometric measures might prove more sensitive and reliable than larger scale measures and whether they might offer a valuable opportunity to link cortical changes to underlying white matter changes. To examine this, we explored the association of BMI with millimetre-scale Gaussian curvature, in addition to standard measures of morphometry such as cortical thickness, surface area and mean curvature.
View Article and Find Full Text PDFMagnetic resonance imaging (MRI) studies have highlighted subcortical, cortical, and structural connectivity abnormalities associated with attention-deficit/hyperactivity disorder (ADHD). Gyrification investigations of the cortex have been inconsistent and largely negative, potentially due to a lack of sensitivity of the previously used morphological parameters. The innovative approach of applying intrinsic curvature analysis, which is predictive of gyrification pattern, to the cortical surface applied herein allowed us greater sensitivity to determine whether the structural connectivity abnormalities thus far identified at a centimeter scale also occur at a millimeter scale within the cortical surface.
View Article and Find Full Text PDFAdolescence is a period of significant brain changes; however, the effects of age and sex on cortical development are yet to be fully characterized. Here, we utilized innovative intrinsic curvature (IC) analysis, along with the traditional cortical measures [cortical thickness (CT), local gyrification index (LGI), and surface area (SA)], to investigate how these indices (1) relate to each other and (2) depend on age and sex in adolescent cortical development. T1-weighted magnetic resonance images from 218 healthy volunteers (age range 8.
View Article and Find Full Text PDFFocal cortical dysplasia is a congenital abnormality of cortical development and the leading cause of surgically remediable drug-resistant epilepsy in children. Post-surgical outcome is improved by presurgical lesion detection on structural MRI. Automated computational techniques have improved detection of focal cortical dysplasias in adults but have not yet been effective when applied to developing brains.
View Article and Find Full Text PDFCommon mechanisms in aging and obesity are hypothesized to increase susceptibility to neurodegeneration, however, direct evidence in support of this hypothesis is lacking. We therefore performed a cross-sectional analysis of magnetic resonance image-based brain structure on a population-based cohort of healthy adults. Study participants were originally part of the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) and included 527 individuals aged 20-87 years.
View Article and Find Full Text PDFWhile the potential for small amounts of motion in functional magnetic resonance imaging (fMRI) scans to bias the results of functional neuroimaging studies is well appreciated, the impact of in-scanner motion on morphological analysis of structural MRI is relatively under-studied. Even among "good quality" structural scans, there may be systematic effects of motion on measures of brain morphometry. In the present study, the subjects' tendency to move during fMRI scans, acquired in the same scanning sessions as their structural scans, yielded a reliable, continuous estimate of in-scanner motion.
View Article and Find Full Text PDFBackground: Schizophrenia is associated with structural brain abnormalities that may be present before disease onset. It remains unclear whether these represent general vulnerability indicators or are associated with the clinical state itself.
Methods: To investigate this, structural brain scans were acquired at two time points (mean scan interval 1.
MRI, enabling in vivo analysis of cortical morphology, offers a powerful tool in the assessment of brain development and pathology. One of the most ubiquitous measures used-the thickness of the cortex-shows abnormalities in a number of diseases and conditions, but the functional and biological correlates of such alterations are unclear. If the functional connotations of structural MRI measures are to be understood, we must strive to clarify the relationship between measures such as cortical thickness and their cytoarchitectural determinants.
View Article and Find Full Text PDFCortical gyrification is not a random process. Instead, the folds that develop are synonymous with the functional organization of the cortex, and form patterns that are remarkably consistent across individuals and even some species. How this happens is not well understood.
View Article and Find Full Text PDFBackground: The brain-derived neurotrophic factor (BDNF) val66met polymorphism is associated with altered activity dependent secretion of BDNF and a variable influence on brain morphology and cognition. Although a met-dose effect is generally assumed, to date the paucity of met-homozygotes have limited our understanding of the role of the met-allele on brain structure.
Methods: To investigate this phenomenon, we recruited sixty normal healthy subjects, twenty in each genotypic group (val/val, val/met and met/met).
The goal of this study was to characterize cerebral cortex thickness patterns in juvenile myoclonic epilepsy (JME). Surface-based morphometry (SBM) was applied to process brain magnetic resonance images acquired from 24 patients with JME and 40 healthy controls and quantify cerebral cortex thickness. Differences in cortical thickness between patients and controls were determined using generalized linear model (covariates: age and gender).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2013
Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions that are accompanied by atypical brain connectivity. So far, in vivo evidence for atypical structural brain connectivity in ASD has mainly been based on neuroimaging studies of cortical white matter. However, genetic studies suggest that abnormal connectivity in ASD may also affect neural connections within the cortical gray matter.
View Article and Find Full Text PDFObjectives: We aimed to 1) determine if subcortical volume deficits are common to mesial temporal lobe epilepsy (MTLE) patients and their unaffected siblings 2) assess the suitability of subcortical volumetric traits as endophenotypes for MTLE.
Methods: MRI-based volume measurements of the hippocampus, amygdala, thalamus, caudate, putamen and pallidium were generated using an automated brain reconstruction method (FreeSurfer) for 101 unrelated 'sporadic' MTLE patients [70 with hippocampal sclerosis (MTLE+HS), 31 with MRI-negative TLE], 83 unaffected full siblings of patients and 86 healthy control subjects. Changes in the volume of subcortical structures in patients and their unaffected siblings were determined by comparison with healthy controls.
Gyrification, the developmental buckling of the cortex, is not a random process-the forces that mediate expansion do so in such a way as to generate consistent patterns of folds across individuals and even species. Although the origin of these forces is unknown, some theories have suggested that they may be related to external cortical factors such as axonal tension. Here, we investigate an alternative hypothesis, namely, whether the differential tangential expansion of the cortex alone can account for the degree and pattern-specificity of gyrification.
View Article and Find Full Text PDFIntroduction: Investigating the heritability of brain structure may be useful in simplifying complicated genetic studies in temporal lobe epilepsy (TLE). A preliminary study is presented to determine if volume deficits of candidate brain structures present at a higher rate in unaffected siblings than controls subjects.
Methods: T1-weighted MR images was acquired for 28 TLE patients, a same-sex unaffected sibling of 12 of these and 28 normal controls.
Several studies have sought to test the neurodevelopmental hypothesis of schizophrenia through analysis of cortical gyrification. However, to date, results have been inconsistent. A possible reason for this is that gyrification measures at the centimeter scale may be insensitive to subtle morphological changes at smaller scales.
View Article and Find Full Text PDFPurpose: Atypical morphology of the surface of the cerebral cortex may be related to abnormal cortical folding (gyrification) and therefore may indicate underlying malformations of cortical development (MCDs). Using magnetic resonance imaging (MRI)-based analysis, we examined cortical morphology in patients with juvenile myoclonic epilepsy (JME).
Methods: MRI data was collected for 24 patients with JME and 40 demographically matched healthy controls.
Purpose: Applying a cross-sectional design, we set out to further characterize the significance of extrahippocampal brain atrophy in a large sample of 'sporadic' mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE+HS). By evaluating the influence of epilepsy chronicity on structural atrophy, this work represents an important step towards the characterization of MRI-based volumetric measurements as genetic endophenotypes for this condition.
Methods: Using an automated brain segmentation technique, MRI-based volume measurements of several brain regions were compared between 75 patients with 'sporadic' MTLE+HS and 50 healthy controls.
In this paper, we draw a link between cortical intrinsic curvature and the distributions of tangential connection lengths. We suggest that differential rates of surface expansion not only lead to intrinsic curvature of the cortical sheet, but also to differential inter-neuronal spacing. We propose that there follows a consequential change in the profile of neuronal connections: specifically an enhancement of the tendency towards proportionately more short connections.
View Article and Find Full Text PDF