Publications by authors named "Lisa R Volpatti"

Background: The use of immune checkpoint inhibitors (CPIs) has become a dominant regimen in modern cancer therapy, however immune resistance induced by tumor-associated macrophages (TAMs) with immune suppressive and evasion properties limits responses. Therefore, the rational design of immune modulators that can control the immune suppressive properties of TAMs and polarize them, as well as dendritic cells (DCs), toward a more proinflammatory phenotype is a principal objective in cancer immunotherapy.

Methods: Here, using a protein engineering approach to enhance cytokine residence in the tumor microenvironment, we examined combined stimulation of the myeloid compartment via tumor stroma-binding granulocyte-macrophage colony-stimulating factor (GM-CSF) to enhance responses in both DCs and T cells via stroma-binding interleukin-12 (IL-12).

View Article and Find Full Text PDF

Atherosclerosis is a chronic inflammatory disease associated with the accumulation of low-density lipoprotein (LDL) in arterial walls. Higher levels of the anti-inflammatory cytokine IL-10 in serum are correlated with reduced plaque burden. However, cytokine therapies have not translated well to the clinic, partially due to their rapid clearance and pleiotropic nature.

View Article and Find Full Text PDF

Cancer immunotherapy is moving toward combination regimens with agents of complementary mechanisms of action to achieve more frequent and robust efficacy. However, compared with single-agent therapies, combination immunotherapies are associated with increased overall toxicity because the very same mechanisms also work in concert to enhance systemic inflammation and promote off-tumor toxicity. Therefore, rational design of combination regimens that achieve improved antitumor control without exacerbated toxicity is a main objective in combination immunotherapy.

View Article and Find Full Text PDF

Self-regulated insulin delivery that mimics native pancreas function has been a long-term goal for diabetes therapies. Two approaches towards this goal are glucose-responsive insulin delivery and islet cell transplantation therapy. Here, biodegradable, partially oxidized alginate carriers for glucose-responsive nanoparticles or islet cells are developed.

View Article and Find Full Text PDF

The SARS-CoV-2 virus has caused an unprecedented global crisis, and curtailing its spread requires an effective vaccine which elicits a diverse and robust immune response. We have previously shown that vaccines made of a polymeric glyco-adjuvant conjugated to an antigen were effective in triggering such a response in other disease models and hypothesized that the technology could be adapted to create an effective vaccine against SARS-CoV-2. The core of the vaccine platform is the copolymer p(Man-TLR7), composed of monomers with pendant mannose or a toll-like receptor 7 (TLR7) agonist.

View Article and Find Full Text PDF

The COVID-19 pandemic underscores the need for rapid, safe, and effective vaccines. In contrast to some traditional vaccines, nanoparticle-based subunit vaccines are particularly efficient in trafficking antigens to lymph nodes, where they induce potent immune cell activation. Here, we developed a strategy to decorate the surface of oxidation-sensitive polymersomes with multiple copies of the SARS-CoV-2 spike protein receptor-binding domain (RBD) to mimic the physical form of a virus particle.

View Article and Find Full Text PDF

Glucose-responsive insulin delivery systems have the potential to improve quality of life for individuals with diabetes by improving blood sugar control and limiting the risk of hypoglycemia. However, systems with desirable insulin release kinetics and high loading capacities have proven difficult to achieve. Here, we report the development of electrostatic complexes (ECs) comprised of insulin, a polycation, and glucose oxidase (GOx).

View Article and Find Full Text PDF

A diverse portfolio of SARS-CoV-2 vaccine candidates is needed to combat the evolving COVID-19 pandemic. Here, we developed a subunit nanovaccine by conjugating SARS-CoV-2 Spike protein receptor binding domain (RBD) to the surface of oxidation-sensitive polymersomes. We evaluated the humoral and cellular responses of mice immunized with these surface-decorated polymersomes (RBD) compared to RBD-encapsulated polymersomes (RBD) and unformulated RBD (RBD), using monophosphoryl lipid A-encapsulated polymersomes (MPLA PS) as an adjuvant.

View Article and Find Full Text PDF

An insulin delivery system that self-regulates blood glucose levels has the potential to limit hypoglycemic events and improve glycemic control. Glucose-responsive insulin delivery systems have been developed by coupling glucose oxidase with a stimuli-responsive biomaterial. However, the challenge of achieving desirable release kinetics (i.

View Article and Find Full Text PDF

The long-term function of transplanted therapeutic cells typically requires systemic immune suppression. Here, we show that a retrievable implant comprising a silicone reservoir and a porous polymeric membrane protects human cells encapsulated in it after implant transplantation in the intraperitoneal space of immunocompetent mice. Membranes with pores 1 µm in diameter allowed host macrophages to migrate into the device without the loss of transplanted cells, whereas membranes with pore sizes <0.

View Article and Find Full Text PDF

To mimic native insulin activity, materials have been developed that encapsulate insulin, glucose oxidase, and catalase for glucose-responsive insulin delivery. A major challenge, however, has been achieving the desired kinetics of both rapid and extended release. Here, we tune insulin release profiles from polymeric nanoparticles by altering the degree of modification of acid-degradable, acetalated-dextran polymers.

View Article and Find Full Text PDF

Cell therapy has already had an important impact on healthcare and provided new treatments for previously intractable diseases. Notable examples include mesenchymal stem cells for tissue regeneration, islet transplantation for diabetes treatment, and T cell delivery for cancer immunotherapy. Biomaterials have the potential to extend the therapeutic impact of cell therapies by serving as carriers that provide 3D organization and support cell viability and function.

View Article and Find Full Text PDF

Protein nanofibrils were first discovered in the context of misfolding and neurodegenerative diseases but have recently been found in naturally occurring functional materials including algal adhesives, bacterial coatings, and even mammalian melanosomes. These physiologically beneficial roles have led to the exploration of their use as the basis for artificial protein-based functional materials for a range of applications as bioscaffolds and carrier agents. In this work, we fabricate core-shell protein microgels stabilized by protein fibrillation with hierarchical structuring on scales ranging from a few nanometers to tens of microns.

View Article and Find Full Text PDF

Analyte-sensitive hydrogels that incorporate optical structures have emerged as sensing platforms for point-of-care diagnostics. The optical properties of the hydrogel sensors can be rationally designed and fabricated through self-assembly, microfabrication or laser writing. The advantages of photonic hydrogel sensors over conventional assay formats include label-free, quantitative, reusable, and continuous measurement capability that can be integrated with equipment-free text or image display.

View Article and Find Full Text PDF

High-tech businesses are the driving force behind global knowledge-based economies. Academic institutions have positioned themselves to serve the high-tech industry through consulting, licensing, and university spinoffs. The awareness of commercialization strategies and building an entrepreneurial culture can help academics to efficiently transfer their inventions to the market to achieve the maximum value.

View Article and Find Full Text PDF

Microfluidic devices offer automation and high-throughput screening, and operate at low volumes of consumables. Although microfluidics has the potential to reduce turnaround times and costs for analytical devices, particularly in medical, veterinary, and environmental sciences, this enabling technology has had limited diffusion into consumer products. This article analyzes the microfluidics market, identifies issues, and highlights successful commercialization strategies.

View Article and Find Full Text PDF

Microfluidic devices offer control over low-volume samples in order to achieve high-throughput analysis, and reduce turnaround time and costs. Their efficient commercialisation has implications for biomedical sciences, veterinary medicine, environmental monitoring and industrial applications. In particular, market diffusion of microfluidic laboratory and point-of-care diagnostic devices can contribute to the improvement of global health.

View Article and Find Full Text PDF

The self-assembly of protein molecules into highly ordered linear aggregates, known as amyloid fibrils, is a phenomenon receiving increasing attention because of its biological roles in health and disease and the potential of these structures to form artificial proteinaceous scaffolds for biomaterials applications. A particularly powerful approach to probe the key physical properties of fibrillar structures is atomic force microscopy, which was used by Usov et al. in this issue of ACS Nano to reveal the polymorphic transitions and chirality inversions of amyloid fibrils in unprecedented detail.

View Article and Find Full Text PDF