Aim: The aim of the study was to elucidate the chain of events leading to oxidative damage in endothelial cells exposed to high glucose.
Method: The nitric oxide synthase (NOS) cofactor tetrahydrobiopterin (BH4), the peroxynitrite decomposition catalyst FP15, the inhibitor of mitochondrial complex II thenoyltrifluoroacetone (TTFA) and the antioxidant superoxide dismutase (SOD) mimetic Mn(III)tetrakis(4-benzoic acid) porphyrin chloride (MnTBAP) were individually added to human umbilical vein endothelial cells (HUVEC) cultured in high glucose. This study was designed to establish the possible sequence of action of NOS, peroxynitrite and superoxide anion in the oxidative damage cascade.
Background: It has been previously shown that hyperglycemia enhances free radical production, inducing oxidative damage, which in its turn activates the death pathways implicated in cell apoptosis and necrosis. But the possible involvement of this pathway in the hyperglycemia-induced apoptosis of endothelial cells has not yet been reported.
Methods: To verify a possible connection between mitochondrial ROS production and apoptosis induced by both stable and oscillating high glucose, SOD, MnTBAP and TTFA was added to HUVEC cell culture medium.
In this study the effects of stable and intermittent high glucose concentrations on ICAM-1, VCAM-1 and E-selectin production, PKC activity and PKCbetaI, betaII and delta isoforms expression in cultured HUVEC have been examined. In stable high glucose ICAM-1, VCAM-1 and E-selectin concentration and mRNA expression increased, and this effect was even more evident in intermittent high glucose. PKC activity increased in fluctuating glucose compared to stable high glucose, due to an over-expression of betaI, betaII and delta isoforms.
View Article and Find Full Text PDFBackground: Postprandial hypertriglyceridemia and hyperglycemia are considered risk factors for cardiovascular disease. Evidence suggests that postprandial hypertriglyceridemia and hyperglycemia induce endothelial dysfunction and inflammation through oxidative stress. Statins and angiotensin type 1 receptor blockers have been shown to reduce oxidative stress and inflammation, improving endothelial function.
View Article and Find Full Text PDFObjective: Oxidative stress has been shown to be increased in the postprandial period in patients with diabetes and has been implicated in the pathogenesis of micro- and macrovascular complications. The aim of this post hoc analysis was to assess the effects of pramlintide, an amylin analog shown to reduce postprandial glucose excursions in patients with diabetes, on markers of oxidative stress in the postprandial period.
Research Design And Methods: In a randomized, single-blind, placebo-controlled, crossover study, 18 evaluable subjects with type 1 diabetes underwent two standardized breakfast meal tests and received pramlintide or placebo in addition to their preprandial insulin.
Adhesion molecules, particularly intracellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and E-selectin, have been associated with cardiovascular disease. Elevated levels of these molecules have been reported in diabetic patients. Postprandial hypertriglyceridemia and hyperglycemia are considered risk factors for cardiovascular disease, and evidence suggests that postprandial hypertriglyceridemia and hyperglycemia may induce an increase in circulating adhesion molecules.
View Article and Find Full Text PDFIncreasing evidence in both experimental and clinical studies suggests that there is a close link between hyperglycemia, oxidative stress and diabetic complications. High blood glucose level determines overproduction of reactive oxygen species (ROS) by the mitochondria electron transport chain. High reactivity of ROS determines chemical changes in virtually all cellular components, leading to DNA and protein modification and lipid peroxidation.
View Article and Find Full Text PDFThe effects of intermittent and constant high glucose in the formation of nitrotyrosine and 8-hydroxydeoxyguanosine (markers of oxidative stress), as well as the possible linkage between oxidative stress and apoptosis in endothelial cells, have been evaluated. Stable high glucose increased nitrotyrosine, 8-hydroxydeoxyguanosine (8-OHdG), and apoptosis levels. However, these effects were more pronounced in intermittent high glucose.
View Article and Find Full Text PDFBackground: Circulating levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) are elevated in diabetic patients. We assessed the role of glucose in the regulation of circulating levels of IL-6, TNF-alpha, and interleukin-18 (IL-18) in subjects with normal or impaired glucose tolerance (IGT), as well as the effect of the antioxidant glutathione.
Methods And Results: Plasma glucose levels were acutely raised in 20 control and 15 IGT subjects and maintained at 15 mmol/L for 5 hours while endogenous insulin secretion was blocked with octreotide.
Background: Postprandial hypertriglyceridemia and hyperglycemia are considered risk factors for cardiovascular disease. Evidence suggests that postprandial hypertriglyceridemia and hyperglycemia induce endothelial dysfunction through oxidative stress; however, the distinct role of these two factors is a matter of debate.
Methods And Results: Thirty type 2 diabetic patients and 20 normal subjects ate 3 different meals: a high-fat meal; 75 g glucose alone; and high-fat meal plus glucose.
Objective: Recently, much attention has been paid to the possibility that postprandial hyperglycemia may be a cardiovascular risk factor in diabetes. Oxidative stress has been involved in the pathogenesis of diabetic complications, and increased plasma levels of nitrotyrosine, a product of peroxynitrite action, have been found in the plasma of diabetic subjects. The aim of the present study was to evaluate whether postprandial hyperglycemia is accompanied by nitrotyrosine generation and, if so, to explore a possible direct role of hyperglycemia in such a phenomenon.
View Article and Find Full Text PDFThis study investigated coronary perfusion pressure, nitric oxide (NO) and superoxide production, nitrotyrosine (NT) formation, and cardiac cell apoptosis in isolated hearts perfused with high glucose concentration. Coronary perfusion pressure; NO and superoxide anion generation; immunostaining for NT, inducible NO synthase (iNOS), and the constitutive type of NO synthase (NOS) eNOS; iNOS and eNOS mRNA expression by Western blot and RT-PCR; and apoptosis of cardiac cells were studied in hearts perfused for 2 h with solutions containing D-glucose at a concentration of 11.1 mmol/l (control), D-glucose at the concentration of 33.
View Article and Find Full Text PDF