Publications by authors named "Lisa Portis"

It is well known that copper (Cu) is toxic to marine organisms. We measured and compared the acute toxicity of several forms of Cu (including nanoCu) amended into a marine sediment with mysids and amphipods. For all the forms of Cu tested, toxicity, measured as the median lethal concentration, ranged from 708 to > 2400 mg Cu/kg (dry sediment) for mysids and 258 to 1070 mg Cu/kg (dry sediment) for amphipods.

View Article and Find Full Text PDF

One application of nanocopper is as a wood-preserving pesticide in pressure-treated lumber. Recent research has shown that pressure-treated lumber amended with micronized copper azole (MCA), which contains nanosized copper, releases copper under estuarine and marine conditions. The form of copper released (i.

View Article and Find Full Text PDF

The widespread use of copper nanomaterials (CuNMs) as antibacterial and antifouling agents in consumer products increases the risk for metal contamination and adverse effects in aquatic environments. Information gaps exist on the potential toxicity of CuNMs in marine environments. We exposed field-collected marine meio- and macrobenthic communities to sediments spiked with micronized copper azole (MCA) using a novel method that brings intact benthic cores into the laboratory and exposes the organisms via surface application of sediments.

View Article and Find Full Text PDF

This Critcal Review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Fifty-seven studies were found where both passive sampler uptake and organism bioaccumulation were measured and 19 of these investigations provided direct comparisons relating passive sampler uptake and organism bioaccumulation. Polymers compared included low-density polyethylene (LDPE), polyoxymethylene (POM), and polydimethylsiloxane (PDMS), and organisms ranged from polychaetes and oligochaetes to bivalves, aquatic insects, and gastropods.

View Article and Find Full Text PDF

The behavior and fate of nanoparticles (NPs) in the marine environment are largely unknown and potentially have important environmental and human health implications. The aggregation and fate of NPs in the marine environment are greatly influenced by their interactions with seawater and dissolved organic carbon (DOC). In the present study, the stability and aggregation of 30-nm-diameter silver nanoparticles (AgNPs) capped with citrate and polyvinylpyrrolidone (PVP; AgNP-citrate and AgNP-PVP) and 21-nm-diameter titanium dioxide (TiO(2)) NPs as affected by seawater salinity and DOC were investigated by measuring hydrodynamic diameters and zeta potentials.

View Article and Find Full Text PDF

Ecotoxicological information for most contaminants is limited to a small number of taxa, and these are generally restricted to comparatively hardy organisms that are readily extractable from test media and easily identifiable. Advances in DNA sequencing can now provide a comprehensive view of benthic invertebrate diversity. The authors applied 454 pyrosequencing to examine the responses of benthic communities in microcosms exposed to sediments with elevated concentrations of triclosan, the endpoint being eukaryl communities that have successfully vertically migrated through the manipulated sediments.

View Article and Find Full Text PDF

Adsorption of hydrophobic organic contaminants (HOCs) to black carbon is a well-studied phenomenon. One emerging class of engineered black carbon materials are single-walled carbon nanotubes (SWNTs). Little research has investigated the potential of SWNT to adsorb and sequester HOCs in complex environmental systems.

View Article and Find Full Text PDF

As the use of single-walled carbon nanotubes (SWNTs) increases over time, so does the potential for environmental release. This research aimed to determine the toxicity, bioavailability, and bioaccumulation of SWNTs in marine benthic organisms at the base of the food chain. The toxicity of SWNTs was tested in a whole sediment exposure with the amphipod Ampelisca abdita and the mysid Americamysis bahia.

View Article and Find Full Text PDF

Aquatic organisms are exposed to many toxic chemicals and interpreting the cause and effect relationships between occurrence and impairment is difficult. Toxicity Identification Evaluation (TIE) provides a systematic approach for identifying responsible toxicants. TIE relies on relatively uninformative and potentially insensitive toxicological end points.

View Article and Find Full Text PDF

Triclosan (5-chloro-2-[2,4-dichlorophenoxy]phenol) is a relatively new, commonly used antimicrobial compound found in many personal care products. Triclosan is toxic to marine organisms at the micrograms per liter level, can photodegrade to a dioxin, can accumulate in humans, and has been found to be stable in marine sediments for over 30 years. To determine the effects of triclosan on marine benthic communities, intact sediment cores were brought into the laboratory and held under flowing seawater conditions.

View Article and Find Full Text PDF

During the Soviet era, Ukraine was an important industrial and agricultural region of the Soviet Union. This industrial and agricultural activity resulted in contamination of Ukraine's estuaries with legacy anthropogenic pollutants. Investigations on the toxicological effects of this estuarine contamination have been limited.

View Article and Find Full Text PDF