Publications by authors named "Lisa Paulson"

Intratumoral heterogeneity poses a significant challenge to the diagnosis and treatment of recurrent glioblastoma. This study addresses the need for non-invasive approaches to map heterogeneous landscape of histopathological alterations throughout the entire lesion for each patient. We developed BioNet, a biologically-informed neural network, to predict regional distributions of two primary tissue-specific gene modules: proliferating tumor (Pro) and reactive/inflammatory cells (Inf).

View Article and Find Full Text PDF

Brain cancers pose a novel set of difficulties due to the limited accessibility of human brain tumor tissue. For this reason, clinical decision-making relies heavily on MR imaging interpretation, yet the mapping between MRI features and underlying biology remains ambiguous. Standard (clinical) tissue sampling fails to capture the full heterogeneity of the disease.

View Article and Find Full Text PDF

Sampling restrictions have hindered the comprehensive study of invasive non-enhancing (NE) high-grade glioma (HGG) cell populations driving tumor progression. Here, we present an integrated multi-omic analysis of spatially matched molecular and multi-parametric magnetic resonance imaging (MRI) profiling across 313 multi-regional tumor biopsies, including 111 from the NE, across 68 HGG patients. Whole exome and RNA sequencing uncover unique genomic alterations to unresectable invasive NE tumor, including subclonal events, which inform genomic models predictive of geographic evolution.

View Article and Find Full Text PDF
Article Synopsis
  • Glioblastoma treatment currently uses a generic approach, leading to many failed clinical trials due to the tumor's vast diversity among patients.
  • An image-based modeling technique was applied to predict T-cell levels from MRI scans of patients in a dendritic cell vaccine trial, focusing on different tumor regions over time.
  • The study identified previously unrecognized patients who responded positively to the vaccine, suggesting that machine learning can improve clinical trial assessments and move towards personalized treatment strategies.
View Article and Find Full Text PDF

Identification of key phenotypic regions such as necrosis, contrast enhancement, and edema on magnetic resonance imaging (MRI) is important for understanding disease evolution and treatment response in patients with glioma. Manual delineation is time intensive and not feasible for a clinical workflow. Automating phenotypic region segmentation overcomes many issues with manual segmentation, however, current glioma segmentation datasets focus on pre-treatment, diagnostic scans, where treatment effects and surgical cavities are not present.

View Article and Find Full Text PDF

Automatic brain tumor segmentation is particularly challenging on magnetic resonance imaging (MRI) with marked pathologies, such as brain tumors, which usually cause large displacement, abnormal appearance, and deformation of brain tissue. Despite an abundance of previous literature on learning-based methodologies for MRI segmentation, few works have focused on tackling MRI skull stripping of brain tumor patient data. This gap in literature can be associated with the lack of publicly available data (due to concerns about patient identification) and the labor-intensive nature of generating ground truth labels for model training.

View Article and Find Full Text PDF

Research on noun-noun combinations has been largely focusing on concrete concepts. Three experiments examined the role of concept abstractness in the representation of noun-noun combinations. In Experiment 1, participants provided written interpretations for phrases constituted by nouns of varying degrees of abstractness.

View Article and Find Full Text PDF