Publications by authors named "Lisa Nowoslawski Akhtar"

Over the past decade, a family of host proteins known as suppressors of cytokine signaling (SOCS) have emerged as frequent targets of viral exploitation. Under physiologic circumstances, SOCS proteins negatively regulate inflammatory signaling pathways by facilitating ubiquitination and proteosomal degradation of pathway machinery. Their expression is tightly regulated to prevent excessive inflammation while maintaining protective antipathogenic responses.

View Article and Find Full Text PDF

HIV-1 replication within macrophages of the CNS often results in cognitive and motor impairment, which is known as HIV-associated dementia (HAD) in its most severe form. IFN-beta suppresses viral replication within these cells during early CNS infection, but the effect is transient. HIV-1 eventually overcomes this protective innate immune response to resume replication through an unknown mechanism, initiating the progression toward HAD.

View Article and Find Full Text PDF

In the decade following their initial discovery, the suppressor of cytokine signaling (SOCS) proteins have been studied for their potential use as immunomodulators in disease. SOCS proteins, especially SOCS1 and SOCS3, are expressed by immune cells and cells of the central nervous system (CNS) and have the potential to impact immune processes within the CNS, including inflammatory cytokine and chemokine production, activation of microglia, macrophages and astrocytes, immune cell infiltration and autoimmunity. We describe CNS-relevant in vitro and in vivo studies that have examined the function of SOCS1 or SOCS3 under various neuroinflammatory or neuropathological conditions, including exposure of CNS cells to inflammatory cytokines or bacterial infection, demyelinating insults, stroke, spinal cord injury, multiple sclerosis and glioblastoma multiforme.

View Article and Find Full Text PDF