Cancers in animals present a large, underutilized reservoir of biomedical information with critical implication for human oncology and medicine in general. Discussing two distinct areas of tumour biology in non-human hosts, we highlight the importance of these findings for our current understanding of cancer, before proposing a coordinated strategy to harvest biomedical information from non-human resources and translate it into a clinical setting. First, infectious cancers that can be transmitted as allografts between individual hosts, have been identified in four distinct, unrelated groups, dogs, Tasmanian devils, Syrian hamsters and, surprisingly, marine bivalves.
View Article and Find Full Text PDFGlioblastoma, the most common primary brain tumour, is also considered one of the most lethal cancers per se. It is highly refractory to therapeutic intervention, as highlighted by the mean patient survival of only 15 months, despite an aggressive treatment approach, consisting of maximal safe surgical resection, followed by radio- and chemotherapy. Radiotherapy, in particular, can have effects on the surviving fractions of tumour cells, which are considered adverse to the desired clinical outcome: It can induce increased cellular proliferation, as well as enhanced invasion.
View Article and Find Full Text PDFDue to the highly invasive nature of Glioblastoma (GB), complete surgical resection is not feasible, while motile tumour cells are often associated with several specific brain structures that enhance treatment-resistance. Here, we investigate the therapeutic potential of Disulfiram and Carbenoxolone, that inhibit two distinct interactions between GB and the brain tissue microenvironment: stress-induced cell-matrix adhesion and gap junction mediated cell-cell communication, respectively. Increase in cell numbers of tumour-initiating cells, which are cultured in suspension as cell clusters, and adherent differentiated cells can be blocked to a similar extent by Carbenoxolone, as both cell populations form gap junctions, but the adherent differentiated cells are much more sensitive to Disulfiram treatment, which - via modulation of NF-κB signalling - interferes with cell-substrate adhesion.
View Article and Find Full Text PDFThe PI3K/Akt/mTOR signalling network is activated in almost 90% of all glioblastoma, the most common primary brain tumour, which is almost invariably lethal within 15 months of diagnosis. Despite intensive research, modulation of this signalling cascade has so far yielded little therapeutic benefit, suggesting that the role of the PI3K network as a pro-survival factor in glioblastoma and therefore a potential target in combination therapy should be re-evaluated. Therefore, we used two distinct pharmacological inhibitors that block signalling at different points of the cascade, namely, GDC-0941 (Pictilisib), a direct inhibitor of the near apical PI3K, and Rapamycin which blocks the side arm of the network that is regulated by mTOR complex 1.
View Article and Find Full Text PDFThe induction of apoptosis, a physiological type of cell death, is currently the primary therapeutic aim of most cancer therapies. As resistance to apoptosis is an early hallmark of developing cancer, the success of this treatment strategy is already potentially compromised at treatment initiation. In this review, we discuss the tumor in Darwinian terms and describe it as a complex, yet highly unstable, ecosystem.
View Article and Find Full Text PDFBackground: Glioblastoma multiforme (GBM), a common primary malignant brain tumor, rarely disseminates beyond the central nervous system and has a very bad prognosis. The current study aimed at the analysis of immunological control in individual patients with GBM.
Methods: Immune phenotypes and plasma biomarkers of GBM patients were determined at the time of diagnosis using flow cytometry and ELISA, respectively.
Cancer stem cells (CSC) have been postulated to be responsible for the key features of a malignancy and its maintenances, as well as therapy resistance, while differentiated cells are believed to make up the rapidly growing tumour bulk. It is therefore important to understand the characteristics of those two distinct cell populations in order to devise treatment strategies which effectively target both cohorts, in particular with respect to cancers, such as glioblastoma. Glioblastoma is the most common primary brain tumour in adults, with a mean patient survival of 12-15 months.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) is the most common primary brain tumor and among the most difficult to treat malignancies per se. In almost 90% of all GBM alterations in the PI3K/Akt/mTOR have been found, making this survival cascade a promising therapeutic target, particular for combination therapy that combines an apoptosis sensitizer, such as a pharmacological inhibitor of PI3K, with an apoptosis inducer, such as radio- or chemotherapy. However, while in vitro data focusing mainly on established cell lines has appeared rather promising, this has not translated well to a clinical setting.
View Article and Find Full Text PDFThe poor prognosis of patients with glioblastoma fuels the search for more effective therapeutic compounds. We previously hypothesised that the neuroleptic olanzapine may enhance antineoplastic effects of temozolomide the standard chemotherapeutic agent used in this disease. This study tested this hypothesis.
View Article and Find Full Text PDFGlioblastoma is a highly aggressive, common brain tumor with poor prognosis. Therefore, this study examines a new therapeutic approach targeting oncogenic and survival pathways combined with common chemotherapeutics. The RIST (rapamycin, irinotecan, sunitinib, temozolomide) and the variant aRIST (alternative to rapamycin, GDC-0941) therapy delineate growth inhibiting effects in established glioblastoma cell lines and primary cultured patient material.
View Article and Find Full Text PDFThe induction of apoptosis, a highly regulated and clearly defined mode of cell dying, is a vital tenet of modern cancer therapy. In this review we focus on three aspects of apoptosis research which we believe are the most crucial and most exciting areas currently investigated and that will need to be better understood in order to enhance the efficacy of therapeutic measures. First, we discuss which target to select for cancer therapy and argue that not the cancer cell as such, but its interaction with the microenvironment is a more promising and genetically stable site of attack.
View Article and Find Full Text PDFAs chemotherapy with temozolomide is far from providing satisfactory clinical outcomes for patients with glioblastoma, more efficient drugs and drug combinations are urgently needed. The anti-malarial artesunate was previously shown to exert a profound cytotoxic effect on various tumor cell lines including those derived from glioblastoma. In the current study, we sought to examine the antiproliferative effect of a combination of temozolomide and artesunate on two different established human glioblastoma cell lines.
View Article and Find Full Text PDFBreaking resistance to chemotherapy is a major goal of combination therapy in many tumors, including advanced neuroblastoma. We recently demonstrated that increased activity of the PI3K/Akt network is associated with poor prognosis, thus providing an ideal target for chemosensitization. Here we show that targeted therapy using the PI3K/mTOR inhibitor NVP-BEZ235 significantly enhances doxorubicin-induced apoptosis in neuroblastoma cells.
View Article and Find Full Text PDFMembers of the PI3K/Akt/mTor signaling cascade are among the most frequently altered proteins in cancer, yet the therapeutic application of pharmacological inhibitors of this signaling network, either as monotherapy or in combination therapy (CT) has so far not been particularly successful. In this review we will focus on the role of PI3K/Akt/mTOR in two distinct tumors, Glioblastoma multiforme (GBM), an adult brain tumor which frequently exhibits PTEN inactivation, and Neuroblastoma (NB), a childhood malignancy that affects the central nervous system and does not harbor any classic alterations in PI3K/Akt signaling. We will argue that inhibitors of PI3K/Akt signaling can be components for potentially promising new CTs in both tumor entities, but further understanding of the signal cascade's complexity is essential for successful implementation of these CTs.
View Article and Find Full Text PDFUnlabelled: Glioblastoma multiforme, the most common primary brain tumor, is highly refractory to therapy, mainly due to its ability to form micrometastases, which are small clusters or individual cells that rapidly transverse the brain and make full surgical resection impossible. Here, it is demonstrated that the invasive phenotype of glioblastoma multiforme is orchestrated by the transcription factor NF-κB which, via metalloproteinases (MMP), regulates fibronectin processing. Both, cell lines and tumor stem cells from primary glioblastoma multiforme, secrete high levels of fibronectin which when cleaved by MMPs forms an extracellular substrate.
View Article and Find Full Text PDFGlioblastoma is the most frequent brain tumor of glial origin in adults. With the best available standard-of-care, patients with this disease have a life expectancy of only approximately 15 months after diagnosis. Because the EGF receptor (HER1/EGFR) is one of the most commonly dysregulated oncogenes in glioblastoma, HER1/EGFR-targeted agents, such as erlotinib, were expected to provide a therapeutic benefit.
View Article and Find Full Text PDFPurpose: Searching for novel approaches to sensitize glioblastoma for cell death, we investigated the proteasome inhibitor bortezomib.
Experimental Design: The effect of bortezomib on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis signaling pathways was analyzed in glioblastoma cell lines, primary glioblastoma cultures, and in an in vivo model.
Results: Bortezomib and TRAIL synergistically trigger cell death and reduce colony formation of glioblastoma cells (combination index < 0.