The applications of hyperspectral imaging across disciplines such as healthcare, automobiles, forensics, and astronomy are constrained by the requirement for intricate filters and dispersion lenses. By utilization of devices with engineered spectral responses and advanced signal processing techniques, the spectral imaging process can be made more approachable across various fields. We propose a spectral response design method employing photon-trapping surface textures (PTSTs), which eliminates the necessity for external diffraction optics and facilitates system miniaturization.
View Article and Find Full Text PDFEngineered spectral response in photodetectors combined with advanced signal processing and deep learning-based image reconstruction enables widespread applications of hyperspectral imaging. These advancements in spectral imaging eliminate the need for complex filters and dispersion lenses, benefiting various fields such as remote sensing, astronomy, agriculture, healthcare, forensics, food quality assessment, environmental monitoring, and cultural heritage preservation. We present a spectral response design method using photon-trapping surface textures (PTSTs) to enable system miniaturization by eliminating the need for external diffraction optics and employing detector-only spectral sensors.
View Article and Find Full Text PDFSince the advent of impact ionization and its application in avalanche photodiodes (APD), numerous application goals have contributed to steady improvements over several decades. The characteristic high operating voltages and the need for thick absorber layers (π-layers) in the Si-APDs pose complicated design and operational challenges in complementary metal oxide semiconductor integration of APDs. In this work, we have designed a sub-10 V operable Si-APD and epitaxially grown the stack on a semiconductor-on-insulator substrate with a submicron thin π-layer, and we fabricated the devices with integrated photon-trapping microholes (PTMH) to enhance photon absorption.
View Article and Find Full Text PDFAvalanche and Single-Photon Avalanche photodetectors (APDs and SPADs) rely on the probability of photogenerated carriers to trigger a multiplication process. Photon penetration depth plays a vital role in this process. In silicon APDs, a significant fraction of the short visible wavelengths is absorbed close to the device surface that is typically highly doped to serve as a contact.
View Article and Find Full Text PDF