Publications by authors named "Lisa Marzilli"

The higher order structure (HOS) of monoclonal antibodies (mAbs) is an important quality attribute with strong contribution to clinically relevant biological functions and drug safety. Due to the multi-faceted nature of HOS, the synergy of multiple complementary analytical approaches can substantially improve the understanding, accuracy, and resolution of HOS characterization. In this study, we applied one- and two-dimensional (1D and 2D) nuclear magnetic resonance (NMR) spectroscopy coupled with chemometric analysis, as well as circular dichroism (CD), differential scanning calorimetry (DSC), and fluorescence spectroscopy as orthogonal methods, to characterize the impact of methionine (Met) oxidation on the HOS of an IgG1 mAb.

View Article and Find Full Text PDF

The application of advanced methodologies such as next-generation sequencing (NGS) and mass spectrometry (MS) to the characterization of cell lines and recombinant proteins has enabled the highly sensitive detection of sequence variants (SVs). However, although these approaches can be leveraged to provide deep insight into product microheterogeneity caused by SVs, they are not used in a standardized manner across the industry. Currently, there is little clarity and consensus on the utilization, timing, and significance of SV findings.

View Article and Find Full Text PDF
Article Synopsis
  • Amino acid sequence variation in protein therapeutics needs careful tracking during cell line and culture development to ensure product quality.
  • A collaborative team at Pfizer developed a reliable testing strategy over six years, utilizing next-generation sequencing (NGS) and amino acid analysis (AAA) to efficiently identify genetic mutations and misincorporations in mammalian cell clones.
  • By switching from mass spectrometry to NGS and AAA for routine monitoring, Pfizer improved efficiency and freed up resources for more detailed product quality assessments in the later stages of development.
View Article and Find Full Text PDF

The inherent nature of cloned CHO cell lines includes the presence of genetic and phenotypic drift that leads to heterogeneous populations. The genetic heterogeneity exhibited by these cells can be exploited to understand the population dynamics of cloned cell lines. Understanding the interplay between heterogeneity, cell culture conditions, and population dynamics will allow for critical assessment of overarching cell line development methods and strategies in terms of population and monoclonality.

View Article and Find Full Text PDF

In the further development and understanding of heme-copper O2-reduction chemistry inspired by the active-site chemistry in cytochrome c oxidase, we describe a dioxygen adduct, [(F8TPP)FeIII-(O22-)-CuII(TMPA)](ClO4) (3), formed by addition of O2 to a 1:1 mixture of the porphyrinate-iron(II) complex (F8TPP)FeII (1a) {F8TPP = tetrakis(2,6-difluorophenyl)porphyrinate dianion} and the copper(I) complex [(TMPA)CuI(MeCN)](ClO4) (1b) {TMPA = tris(2-pyridylmethyl)amine}. Complex 3 forms in preference to heme-only or copper-only binuclear products, is remarkably stable {t1/2 (RT; MeCN) approximately 20 min; lambda max = 412 (Soret), 558 nm; EPR silent}, and is formulated as a peroxo complex on the basis of manometry {1a/1b/O2 = 1:1:1}, MALDI-TOF mass spectrometry {16O2, m/z 1239 [(3 + MeCN)+]; 18O2, m/z 1243}, and resonance Raman spectroscopy {nu(O-O) = 808 cm-1; Delta16O2/18O2 = 46 cm-1; Delta16O2/16/18O2 = 23 cm-1}. Consistent with a mu-eta2:eta1 bridging peroxide ligand, two metal-O stretching frequencies are observed {nu(Fe-O) = 533 cm-1, nu(Fe-O-Cu) = 511 cm-1}, and supporting normal coordinate analysis is presented.

View Article and Find Full Text PDF

Sarcoidosis is a disease of unknown etiology characterized by noncaseating epithelioid granulomas, oligoclonal CD4(+) T cell infiltrates, and immune complex formation. To identify pathogenic antigens relevant to immune-mediated granulomatous inflammation in sarcoidosis, we used a limited proteomics approach to detect tissue antigens that were poorly soluble in neutral detergent and resistant to protease digestion, consistent with the known biochemical properties of granuloma-inducing sarcoidosis tissue extracts. Tissue antigens with these characteristics were detected with immunoglobulin (Ig)G or F(ab')(2) fragments from the sera of sarcoidosis patients in 9 of 12 (75%) sarcoidosis tissues (150-160, 80, or 60-64 kD) but only 3 of 22 (14%) control tissues (all 62-64 kD; P = 0.

View Article and Find Full Text PDF

Recombinant monoclonal antibodies (mAbs) are an emerging therapeutic area. However, there are few reports on disulfide bond assignment of recombinant mAbs. This work describes the complete disulfide bond assignment of a recombinant immunoglobulin G4 (IgG4) mAb.

View Article and Find Full Text PDF