TLR3 is expressed in human skin and keratinocytes, and given its varied role in skin inflammation, development, and regeneration, we sought to determine the cellular response in normal human keratinocytes to TLR3 activation. We investigated this mechanism by treating primary human keratinocytes with both UVB, an endogenous and physiologic TLR3 activator, and poly(I:C), a synthetic and selective TLR3 ligand. TLR3 activation with either UVB or poly(I:C) altered keratinocyte morphology, coinciding with the key features of epithelial-to-mesenchymal transition: increased epithelial-to-mesenchymal transition gene expression, enhanced migration, and increased invasion properties.
View Article and Find Full Text PDFNon-melanoma skin cancer (NMSC) incidence is rising, especially in high-risk, immunocompromised groups such as organ transplant patients, who often develop numerous, aggressive cutaneous squamous cell carcinomas. Identifying the pathways that support NMSC development will result in new approaches for prevention and therapy. Our goal is to define the function of REDD1 (Regulated in DNA Damage and Development 1) in the UVB stress response.
View Article and Find Full Text PDFIntratumoral heterogeneity in bladder cancer is a barrier to accurate molecular sub-classification and treatment efficacy. However, individual cellular and mechanistic contributions to tumor heterogeneity are controversial. We examined potential mechanisms of FOXA1 and PTEN inactivation in bladder cancer and their contribution to tumor heterogeneity.
View Article and Find Full Text PDFNon-melanoma skin cancer (NMSC) is the most common form of cancer. Ultraviolet-B (UVB) radiation has been shown to be a complete carcinogen in the development of NMSC. The mammalian target of rapamycin complex 1 (mTORC1) is upregulated by UVB.
View Article and Find Full Text PDFNon-melanoma skin cancer (NMSC) is the most commonly diagnosed cancer in the United States. Ultraviolet-B (UVB) irradiation is the primary carcinogen responsible for stimulating NMSC development. Ornithine Decarboxylase (ODC), the first rate-limiting enzyme in the synthesis of polyamines, is upregulated in response to a variety of proliferation stimuli, including UVB exposure.
View Article and Find Full Text PDFThe primary cause of non-melanoma skin cancer (NMSC) is ultraviolet B (UVB) radiation. We have shown previously that mTORC2 inhibition sensitizes keratinocytes to UVB-induced apoptosis mediated by the transcription factor FOXO3a. FOXO3a is a key regulator of apoptosis and a tumor suppressor in several cancer types.
View Article and Find Full Text PDFIt has been hypothesized that both the 3'-untranslated region (3'UTR) and the 5'-untranslated region (5'UTR) of the ornithine decarboxylase (ODC) mRNA influence the expression of the ODC protein. Here, we use luciferase expression constructs to examine the influence of both UTRs in keratinocyte derived cell lines. The ODC 5'UTR or 3'UTR was cloned into the pGL3 control vector upstream or downstream of the luciferase reporter gene, respectively, and luciferase activity was measured in both non-tumorigenic and tumorigenic mouse keratinocyte cell lines.
View Article and Find Full Text PDFNonmelanoma skin cancer (NMSC) is the most common cancer worldwide and the incidence continues to rise, in part due to increasing numbers in high-risk groups such as organ transplant recipients and those taking photosensitizing medications. The most significant risk factor for NMSC is ultraviolet radiation (UVR) from sunlight, specifically UVB, which is the leading cause of DNA damage, photoaging, and malignant transformation in the skin. Activation of apoptosis following UVR exposure allows the elimination of irreversibly damaged cells that may harbor oncogenic mutations.
View Article and Find Full Text PDFOrnithine decarboxylase (ODC) is the first and usually rate-limiting enzyme in the polyamine biosynthetic pathway. In a normal physiological state, ODC is tightly regulated. However, during neoplastic transformation, ODC expression becomes upregulated.
View Article and Find Full Text PDFExposure to ultraviolet-B (UVB) irradiation, the principal cause of non-melanoma skin cancer (NMSC), activates both the rapamycin-sensitive mammalian target of rapamycin complex 1 (mTORC1) and the rapamycin-resistant mTORC2. We have previously reported that UVB-induced keratinocyte survival is dependent on mTORC2, though the specific mechanism is not well understood. FOXO3a is an important transcription factor involved in regulating cell survival.
View Article and Find Full Text PDFCancer Growth Metastasis
September 2015
Nonmelanoma skin cancer (NMSC) is a major health concern worldwide. With increasing numbers in high-risk groups such as organ transplant recipients and patients taking photosensitizing medications, the incidence of NMSC continues to rise. Mouse models of NMSC allow us to better understand the molecular signaling cascades involved in skin tumor development in order to identify novel therapeutic strategies.
View Article and Find Full Text PDFActivation of signaling dependent on the mammalian target of rapamycin (mTOR) has been demonstrated in a variety of human malignancies, and our previous work suggests that mTOR complex (mTORC) 1 and mTORC2 may play unique roles in skin tumorigenesis. The purpose of these studies was to investigate the function of mTORC2-dependent pathways in skin tumor development and the maintenance of established tumors. Using mice that allow spatial and temporal control of mTORC2 in epidermis by conditional knockout of its essential component Rictor, we studied the effect of mTORC2 loss on both epidermal proliferation and chemical carcinogenesis.
View Article and Find Full Text PDFCancer Prev Res (Phila)
December 2012
UV radiation is the major risk factor for developing skin cancer, the most prevalent cancer worldwide. Several studies indicate that mTOR signaling is activated by UVB and may play an important role in skin tumorigenesis. mTOR exists in two functionally and compositionally distinct protein complexes: the rapamycin-sensitive mTOR complex 1 (mTORC1) and the rapamycin-resistant mTOR complex 2 (mTORC2).
View Article and Find Full Text PDFNeoplastic growth is associated with increased polyamine biosynthetic activity and content. Tumor promoter treatment induces the rate-limiting enzymes in polyamine biosynthesis, ornithine decarboxylase (ODC), and S-adenosylmethionine decarboxylase (AdoMetDC), and targeted ODC overexpression is sufficient for tumor promotion in initiated mouse skin. We generated a mouse model with doxycycline (Dox)-regulated AdoMetDC expression to determine the impact of this second rate-limiting enzyme on epithelial carcinogenesis.
View Article and Find Full Text PDFUpon Ras activation, ODC (ornithine decarboxylase) is markedly induced, and numerous studies suggest that ODC expression is controlled by Ras effector pathways. ODC is therefore a potential target in the treatment and prevention of Ras-driven tumours. In the present study we compared ODC mRNA translation profiles and stability in normal and Ras12V-transformed RIE-1 (rat intestinal epithelial) cells.
View Article and Find Full Text PDFOrnithine decarboxylase (ODC), the first enzyme of polyamine metabolism, is rapidly upregulated in response to agents that induce a pathological cardiac hypertrophy. Transgenic mice overexpressing ODC in the heart (MHC-ODC mice) experience a much more dramatic left ventricular hypertrophy in response to β-adrenergic stimulation with isoproterenol (ISO) compared to wild-type (WT) controls. ISO also induced arginase activity in transgenic hearts but not in controls.
View Article and Find Full Text PDFActivity of the polyamine biosynthetic enzyme ornithine decarboxylase (ODC) and intracellular levels of ODC protein are controlled very tightly. Numerous studies have described ODC regulation at the levels of transcription, translation, and protein degradation in normal cells and dysregulation of these processes in response to oncogenic stimuli. Although posttranscriptional regulation of ODC has been well documented, the RNA binding proteins (RBPs) that interact with ODC mRNA and control synthesis of the ODC protein have not been defined.
View Article and Find Full Text PDFOrnithine decarboxylase (ODC) is the first and usually rate-limiting enzyme in the polyamine biosynthetic pathway. Under normal physiological conditions, polyamine content and ODC enzyme activity are highly regulated. However, the induction of ODC activity is an early step in neoplastic transformation.
View Article and Find Full Text PDFMyoblast differentiation into multinuclear myotubes implies the slow-down of their proliferative drive and the expression of myogenin, an early marker of myogenic differentiation. Natural polyamines-such as putrescine, spermidine and spermine-are low molecular weight organic polycations, well known as mediators involved in cell homeostasis. Many evidences in the literature point to their role in driving cellular differentiation processes.
View Article and Find Full Text PDFThe role of ornithine decarboxylase (ODC) in polyamine metabolism has long been established, but the exact source of ornithine has always been unclear. The arginase enzymes are capable of producing ornithine for the production of polyamines and may hold important regulatory functions in the maintenance of this pathway. Utilizing our unique set of arginase single and double knockout mice, we analyzed polyamine levels in the livers, brains, kidneys, and small intestines of the mice at 2 wk of age, the latest timepoint at which all of them are still alive, to determine whether tissue polyamine levels were altered in response to a disruption of arginase I (AI) and II (AII) enzymatic activity.
View Article and Find Full Text PDFThe purpose of this study was to assess the relationship between progression-free survival (PFS) in patients treated with DFMO + PCV (procarbazine, CCNU, vincristine) chemotherapy for malignant gliomas with tumor cell ornithine decarboxylase (ODC) activity. Formalin-fixed slides were obtained for study patients with anaplastic gliomas (AGs) and glioblastoma treated on protocol DM92-035. ODC levels were measured using an antibody to ODC coupled to Alexa 647 dye (Ab-ODC-Alexa 647).
View Article and Find Full Text PDFOrnithine decarboxylase (ODC) is the first and generally rate-limiting enzyme in polyamine biosynthesis. Deregulation of ODC is critical for oncogenic growth, and ODC is a target of Ras. These experiments examine translational regulation of ODC in RIE-1 cells, comparing untransformed cells with those transformed by an activated Ras12V mutant.
View Article and Find Full Text PDFElevated polyamine content and increased ornithine decarboxylase (ODC) activity have been associated with neoplastic growth in numerous animal models and human tissues. Antizyme (AZ) is a negative regulator of polyamine metabolism that inhibits ODC activity, stimulates ODC degradation, and suppresses polyamine uptake. Preliminary evidence, obtained from transgenic mice with tissue specific overexpression of AZ indicates that tumor development can be suppressed by AZ.
View Article and Find Full Text PDFApoptotic cell death of cardiomyocytes is involved in several cardiovascular diseases including ischemia, hypertrophy, and heart failure. The polyamines putrescine, spermidine, and spermine are polycations absolutely required for cell growth and division. However, increasing evidence indicates that polyamines, cell growth, and cell death can be tightly connected.
View Article and Find Full Text PDF