L-rhamnose, a naturally abundant sugar, plays diverse biological roles in bacteria, influencing biofilm formation and pathogenesis. This study investigates the global impact of L-rhamnose on the transcriptome and biofilm formation of PHL628 under various experimental conditions. We compared growth in planktonic and biofilm states in rich (LB) and minimal (M9) media at 28 °C and 37 °C, with varying concentrations of L-rhamnose or D-glucose as a control.
View Article and Find Full Text PDFAntibiotics are used to combat the ever-present threat of infectious diseases, but bacteria are continually evolving an assortment of defenses that enable their survival against even the most potent treatments. While the demand for novel antibiotic agents is high, the discovery of a new agent is exceedingly rare. We chose to focus on understanding how different signal transduction pathways in the gram-negative bacterium () influence the sensitivity of the organism to antibiotics from three different classes: tetracycline, chloramphenicol, and levofloxacin.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2022
Biofilm growth and survival pose a problem in both medical and industrial fields. Bacteria in biofilms are more tolerant to antibiotic treatment due to the inability of antibiotics to permeate to the bottom layers of cells in a biofilm and the creation of altered microenvironments of bacteria deep within the biofilm. Despite the abundance of information we have about biofilm growth and maturation, we are still learning how manipulating different signaling pathways influences the formation and fitness of biofilm.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2018
SurA is a gram-negative, periplasmic chaperone protein involved in the proper folding of outer membrane porins (OMPs), which protect bacteria against toxins in the extracellular environment by selectively regulating the passage of nutrients into the cell. Previous studies demonstrated that deletion of SurA renders bacteria more sensitive to toxins that compromise the integrity of the outer membrane. Inhibitors of SurA will perturb the folding of OMPs, leading to disruption of the outer membrane barrier and making the cell more vulnerable to toxic insults.
View Article and Find Full Text PDFThe Unfolded Protein Response (UPR) indirectly regulates extracellular proteostasis through transcriptional remodeling of endoplasmic reticulum (ER) proteostasis pathways. This remodeling attenuates secretion of misfolded, aggregation-prone proteins during ER stress. Through these activities, the UPR has a critical role in preventing the extracellular protein aggregation associated with numerous human diseases.
View Article and Find Full Text PDFLight-chain amyloidosis (AL) is a degenerative disease characterized by the extracellular aggregation of a destabilized amyloidogenic Ig light chain (LC) secreted from a clonally expanded plasma cell. Current treatments for AL revolve around ablating the cancer plasma cell population using chemotherapy regimens. Unfortunately, this approach is limited to the ∼ 70% of patients who do not exhibit significant organ proteotoxicity and can tolerate chemotherapy.
View Article and Find Full Text PDFEnd-functionalized macromolecular starch reagents, prepared by reductive amination, were grafted onto a urethane-linked polyester-based backbone using copper-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry to produce novel amphiphilic hybrid graft copolymers. These copolymers represent the first examples of materials where the pendant chains derived from starch biopolymers have been incorporated into a host polymer by a grafting-to approach. The graft copolymers were prepared in good yields (63-90%) with high grafting efficiencies (66-98%).
View Article and Find Full Text PDFThe heat shock response is an evolutionarily conserved, stress-responsive signaling pathway that adapts cellular proteostasis in response to pathologic insult. In metazoans, the heat shock response primarily functions through the posttranslational activation of heat shock factor 1 (HSF1), a stress-responsive transcription factor that induces the expression of cytosolic proteostasis factors including chaperones, cochaperones, and folding enzymes. HSF1 is a potentially attractive therapeutic target to ameliorate pathologic imbalances in cellular proteostasis associated with human disease, although the underlying impact of stress-independent HSF1 activation on cellular proteome composition remains to be defined.
View Article and Find Full Text PDFThe preparation and characterization of amylose-small molecule complexes is a heavily researched area. There are few reports, however, that compare complexation efficiencies across a matrix of different amylose hosts and guests. We present herein a detailed account of using microwave irradiation to prepare amylose-small molecule complexes in water.
View Article and Find Full Text PDFDirect and selective small molecule control of transcription factor activity is an appealing avenue for elucidating the cell biology mediated by transcriptional programs. However, pharmacologic tools to modulate transcription factor activity are scarce because transcription factors are not readily amenable to small molecule-mediated regulation. Moreover, existing genetic approaches to regulate transcription factors often lead to high nonphysiologic levels of transcriptional activation that significantly impair our ability to understand the functional implications of transcription factor activity.
View Article and Find Full Text PDFProtein homeostasis (or proteostasis) within the endoplasmic reticulum (ER) is regulated by the unfolded protein response (UPR). The UPR consists of three integrated signaling pathways activated by the accumulation of misfolded proteins within the ER lumen. Activation of the UPR alters ER proteostasis through translational attenuation of new protein synthesis and transcriptional remodeling of ER proteostasis pathways, providing a mechanism to adapt ER proteostasis in response to cellular stress.
View Article and Find Full Text PDFThe unfolded protein response (UPR) maintains endoplasmic reticulum (ER) proteostasis through the activation of transcription factors such as XBP1s and ATF6. The functional consequences of these transcription factors for ER proteostasis remain poorly defined. Here, we describe methodology that enables orthogonal, small-molecule-mediated activation of the UPR-associated transcription factors XBP1s and/or ATF6 in the same cell independent of stress.
View Article and Find Full Text PDFThis paper describes a convenient approach to quantitative removal of the synthetic host cucurbit[8]uril (Q8) from aqueous mixtures using a sepharose resin coated in memantine groups to selectively sequester Q8 in the presence of competing hosts and guests. The "Q8 sponge" can separate Q8 from Q6 and reverse the Q8-mediated dimerization of peptides.
View Article and Find Full Text PDFThe discovery of molecules that bind tightly and selectively to desired proteins continues to drive innovation at the interface of chemistry and biology. This paper describes the binding of human insulin by the synthetic receptor cucurbit[7]uril (Q7) in vitro. Isothermal titration calorimetry and fluorescence spectroscopy experiments show that Q7 binds to insulin with an equilibrium association constant of 1.
View Article and Find Full Text PDF