The nuclear progesterone receptor (nPR) mediates many of the physiological effects of progesterone by regulating the expression of genes, however, progesterone also exerts non-transcriptional (non-genomic) effects that have been proposed to rely on a receptor that is distinct from nPR. Several members of the progestin and AdipoQ-Receptor (PAQR) family were recently identified as potential mediators of these non-genomic effects. Membranes from cells expressing these proteins, called mPRalpha, mPRbeta and mPRgamma, were shown to specifically bind progesterone and have G-protein coupled receptor (GPCR) characteristics, although other studies dispute these findings.
View Article and Find Full Text PDFWe previously reported a role for the IZH2 gene product in metal ion metabolism. Subsequently, Izh2p was also identified as a member of the PAQR family of receptors and, more specifically, as the receptor for the plant protein osmotin. In this report, we investigate the effect of Izh2p on iron homeostasis.
View Article and Find Full Text PDFZinc is an essential micronutrient that can also be toxic. An intricate mechanism exists in yeast that maintains cellular zinc within an optimal range. The centerpiece of this mechanism is the Zap1p protein, a transcription factor that senses zinc deficiency and responds by up-regulating genes involved in zinc metabolism.
View Article and Find Full Text PDF