Specific removal of a protein is a key to understanding its function. "Trim-Away" utilizes TRIM21, an antibody receptor and ubiquitin ligase, for acute and specific reduction of proteins. When TRIM21 is expressed in cells, introduction of a specific antibody causes rapid degradation of the targeted protein; however, TRIM21 is endogenously expressed in few cell types.
View Article and Find Full Text PDFMore adolescents are coming out as transgender each year and are put on puberty blockers to suppress natal puberty, which is then followed by cross-hormone treatment to achieve puberty of the desired gender. Studies to examine the effects of puberty suppression and virilizing therapy on future reproductive potential among transgender males are lacking. This study used a translational murine in vitro fertilization model to examine the effects of female puberty suppression with depot leuprolide acetate (LA), followed by virilizing therapy with testosterone cypionate (T), on embryologic and pregnancy outcomes.
View Article and Find Full Text PDFHUWE1 is a HECT-domain ubiquitin E3 ligase expressed in various tissues. Although HUWE1 is known to promote degradation of the tumor suppressor p53, given a growing list of its substrates, functions of HUWE1 remain elusive. Here, we investigated the role of HUWE1 in the female reproductive system.
View Article and Find Full Text PDFMammalian oocytes are stored in the ovary for prolonged periods, and arrested in meiotic prophase. During this period, their plasma membranes are constantly being recycled by endocytosis and exocytosis. However, the function of this membrane turnover is unknown.
View Article and Find Full Text PDFMammalian oocytes are arrested in meiotic prophase from around the time of birth until just before ovulation. Following an extended period of growth, they are stimulated to mature to the metaphase II stage by a preovulatory luteinizing hormone (LH) surge that occurs with each reproductive cycle. Small, growing oocytes are not competent to mature into fertilizable eggs because they do not possess adequate amounts of cell cycle regulatory proteins, particularly cyclin-dependent kinase 1 (CDK1).
View Article and Find Full Text PDFDuring oocyte maturation, capacity and sensitivity of Ca(2+) signaling machinery increases dramatically, preparing the metaphase II (MII)-arrested egg for fertilization. Upon sperm-egg fusion, Ca(2+) release from IP3-sensitive endoplasmic reticulum stores results in cytoplasmic Ca(2+) oscillations that drive egg activation and initiate early embryo development. Premature Ca(2+) release can cause parthenogenetic activation prior to fertilization; thus, preventing inappropriate Ca(2+) signaling is crucial for ensuring robust MII arrest.
View Article and Find Full Text PDFDuring oocyte maturation, fertilization, and early embryo development until zygotic genome activation (ZGA), transcription is suppressed, and gene expression is dependent upon the timely activation of stored mRNAs. Embryonic poly(A)-binding protein (EPAB) is the predominant poly(A)-binding protein in Xenopus, mouse, and human oocytes and early embryos and is important for regulating translational activation of maternally stored mRNAs. EPAB is critical for early development because Epab(-/-) female mice do not produce mature eggs and are infertile.
View Article and Find Full Text PDFG protein-coupled receptor 3 (GPR3) is a constitutively active receptor that maintains high 3'-5'-cyclic adenosine monophosphate (cAMP) levels required for meiotic arrest in oocytes and CNS function. Ligand-activated G protein-coupled receptors (GPCRs) signal at the cell surface and are silenced by phosphorylation and β-arrestin recruitment upon endocytosis. Some GPCRs can also signal from endosomes following internalization.
View Article and Find Full Text PDFGene expression during oocyte maturation and early embryogenesis up to zygotic genome activation requires translational activation of maternally-derived mRNAs. EPAB [embryonic poly(A)-binding protein] is the predominant poly(A)-binding protein during this period in Xenopus, mouse and human. In Xenopus oocytes, ePAB stabilizes maternal mRNAs and promotes their translation.
View Article and Find Full Text PDFMammalian oocytes are arrested at prophase I of meiosis until a preovulatory surge of LH stimulates them to resume meiosis. Prior to the LH surge, high levels of cAMP within the oocyte maintain meiotic arrest; this cAMP is generated in the oocyte through the activity of the constitutively active, G(s)-coupled receptor, G-protein-coupled receptor 3 (GPR3) or GPR12. Activated GPRs are typically targeted for desensitization through receptor-mediated endocytosis, but a continuously high level of cAMP is needed for meiotic arrest.
View Article and Find Full Text PDFOocyte maturation in rodents is characterized by a dramatic reorganization of the endoplasmic reticulum (ER) and an increase in the ability of an oocyte to release Ca(2+) in response to fertilization or inositol 1,4,5-trisphosphate (IP(3)). We examined if human oocytes undergo similar changes during cytoplasmic meiotic maturation both in vivo and in vitro. Immature, germinal vesicle (GV)-stage oocytes had a fine network of ER throughout the cortex and interior, whereas the ER in the in vivo-matured, metaphase II oocytes was organized in large (diameter, ∼2-3 μm) accumulations throughout the cortex and interior.
View Article and Find Full Text PDFMammalian oocytes are arrested in meiotic prophase by an inhibitory signal from the surrounding somatic cells in the ovarian follicle. In response to luteinizing hormone (LH), which binds to receptors on the somatic cells, the oocyte proceeds to second metaphase, where it can be fertilized. Here we investigate how the somatic cells regulate the prophase-to-metaphase transition in the oocyte, and show that the inhibitory signal from the somatic cells is cGMP.
View Article and Find Full Text PDFOocyte cryopreservation is a promising technology that could benefit women undergoing assisted reproduction. Most studies examining the effects of cryopreservation on fertilization and developmental competence have been done using metaphase II-stage oocytes, while fewer studies have focused on freezing oocytes at the germinal vesicle (GV) stage, followed by in vitro maturation. Herein, we examined the effects of vitrifying GV-stage mouse oocytes on cytoplasmic structure and on the ability to undergo cytoplasmic changes necessary for proper fertilization and early embryonic development.
View Article and Find Full Text PDFThe mammalian oocyte develops within a complex of somatic cells known as a follicle, within which signals from the somatic cells regulate the oocyte, and signals from the oocyte regulate the somatic cells. Because isolation of the oocyte from the follicle disrupts these communication pathways, oocyte physiology is best studied within an intact follicle. Here we describe methods for quantitative microinjection of follicle-enclosed mouse oocytes, thus allowing the introduction of signaling molecules as well as optical probes into the oocyte within its physiological environment.
View Article and Find Full Text PDFLuteinizing hormone (LH) acts on ovarian follicles to reinitiate meiosis in prophase-arrested mammalian oocytes, and this has been proposed to occur by interruption of a meioisis-inhibitory signal that is transmitted through gap junctions into the oocyte from the somatic cells that surround it. To investigate this idea, we microinjected fluorescent tracers into live antral follicle-enclosed mouse oocytes, and we demonstrate for the first time that LH causes a decrease in the gap junction permeability between the somatic cells, prior to nuclear envelope breakdown (NEBD). The decreased permeability results from the MAP kinase-dependent phosphorylation of connexin 43 on serines 255, 262 and 279/282.
View Article and Find Full Text PDFAlthough it is established that cAMP accumulation plays a pivotal role in preventing meiotic resumption in mammalian oocytes, the mechanisms controlling cAMP levels in the female gamete have remained elusive. Both production of cAMP via GPCRs/Gs/adenylyl cyclases endogenous to the oocyte as well as diffusion from the somatic compartment through gap junctions have been implicated in maintaining cAMP at levels that preclude maturation. Here we have used a genetic approach to investigate the different biochemical pathways contributing to cAMP accumulation and maturation in mouse oocytes.
View Article and Find Full Text PDFIn mammalian oocytes, the maintenance of meiotic prophase I arrest prior to the surge of LH that stimulates meiotic maturation depends on a high level of cAMP within the oocyte. In mouse and rat, the cAMP is generated in the oocyte, and this requires the activity of a constitutively active, Gs-linked receptor, GPR3 or GPR12, respectively. To examine if human oocyte meiotic arrest depends on a similar pathway, we used RT-PCR and Western blotting to look at whether human oocytes express the same components for maintaining arrest as rodent oocytes.
View Article and Find Full Text PDFThe maintenance of meiotic prophase arrest in fully grown vertebrate oocytes depends on the activity of a G(s) G-protein that activates adenylyl cyclase and elevates cAMP, and in the mouse oocyte, G(s) is activated by a constitutively active orphan receptor, GPR3. To determine whether the action of luteinizing hormone (LH) on the mouse ovarian follicle causes meiotic resumption by inhibiting GPR3-G(s) signaling, we examined the effect of LH on the localization of Galpha(s). G(s) activation in response to stimulation of an exogenously expressed beta(2)-adrenergic receptor causes Galpha(s) to move from the oocyte plasma membrane into the cytoplasm, whereas G(s) inactivation in response to inhibition of the beta(2)-adrenergic receptor causes Galpha(s) to move back to the plasma membrane.
View Article and Find Full Text PDFThe signaling pathway by which luteinizing hormone (LH) acts on the somatic cells of vertebrate ovarian follicles to stimulate meiotic resumption in the oocyte requires a decrease in cAMP in the oocyte, but how cAMP is decreased is unknown. Activation of Gi family G proteins can lower cAMP by inhibiting adenylate cyclase or stimulating a cyclic nucleotide phosphodiesterase, but we show here that inhibition of this class of G proteins by injection of pertussis toxin into follicle-enclosed mouse oocytes does not prevent meiotic resumption in response to LH. Likewise, elevation of Ca2+ can lower cAMP through its action on Ca2+-sensitive adenylate cyclases or phosphodiesterases, but inhibition of a Ca2+ rise by injection of EGTA into follicle-enclosed mouse oocytes does not inhibit the LH response.
View Article and Find Full Text PDFMammalian oocytes grow and undergo meiosis within ovarian follicles. Oocytes are arrested at the first meiotic prophase, held in meiotic arrest by the surrounding follicle cells until a surge of LH from the pituitary stimulates the immature oocyte to resume meiosis. Meiotic arrest depends on a high level of cAMP within the oocyte.
View Article and Find Full Text PDFThe maintenance of meiotic prophase arrest in mouse oocytes within fully grown follicles, prior to the surge of luteinizing hormone (LH) that triggers meiotic resumption, depends on a high level of cAMP within the oocyte. cAMP is produced within the oocyte, at least in large part, by the G(s)-linked G-protein-coupled receptor, GPR3. Gpr3 is localized in the mouse oocyte but is also present throughout the follicle.
View Article and Find Full Text PDFThe arrest of meiotic prophase in mouse oocytes within antral follicles requires the G protein G(s) and an orphan member of the G protein-coupled receptor family, GPR3. To determine whether GPR3 activates G(s), the localization of Galpha(s) in follicle-enclosed oocytes from Gpr3(+/+) and Gpr3(-/-) mice was compared by using immunofluorescence and Galpha(s)GFP. GPR3 decreased the ratio of Galpha(s) in the oocyte plasma membrane versus the cytoplasm and also decreased the amount of Galpha(s) in the oocyte.
View Article and Find Full Text PDFSRC family kinases (SFKs) function in initiating Ca2+ release at fertilization in several species in the vertebrate evolutionary line, but whether they play a similar role in mammalian fertilization has been uncertain. We investigated this question by first determining which SFK proteins are expressed in mouse eggs, and then measuring Ca2+ release at fertilization in the presence of dominant negative inhibitors. FYN and YES proteins were found in mouse eggs, but other SFKs were not detected; based on this, we injected mouse eggs with a mixture of FYN and YES Src homology 2 (SH2) domains.
View Article and Find Full Text PDFMammalian oocytes are held in prophase arrest by an unknown signal from the surrounding somatic cells. Here we show that the orphan Gs-linked receptor GPR3, which is localized in the oocyte, maintains this arrest. Oocytes from Gpr3 knockout mice resume meiosis within antral follicles, independently of an increase in luteinizing hormone, and this phenotype can be reversed by injection of Gpr3 RNA into the oocytes.
View Article and Find Full Text PDF