Publications by authors named "Lisa M Kattenhorn"

Sequencing of the human genome and numerous advances in molecular techniques have launched the era of genetic medicine. Increasingly precise technologies for genetic modification, manufacturing, and administration of pharmaceutical-grade biologics have proved the viability of in vivo gene therapy (GTx) as a therapeutic modality as shown in several thousand clinical trials and recent approval of several GTx products for treating rare diseases and cancers. In recognition of the rapidly advancing knowledge in this field, the regulatory landscape has evolved considerably to maintain appropriate monitoring of safety concerns associated with this modality.

View Article and Find Full Text PDF

Hemophilia A, a bleeding disorder, affects 1:5,000 males and is caused by a deficiency of human blood coagulation factor VIII (hFVIII). Studies in mice and macaques identified AAVhu37.E03.

View Article and Find Full Text PDF

A number of simian and simian human immunodeficiency viruses (SIV and SHIV, respectively) have been used to assess the efficacy of HIV-1 vaccine strategies. Among these, SIVmac239 is considered among the most stringent because, unlike SHIV models, its full genome has coevolved in its macaque host and its tier 3 envelope glycoprotein (Env) is exceptionally hard to neutralize. Here, we investigated the ability of eCD4-Ig, an antibody-like entry inhibitor that emulates the HIV-1 and SIV receptor and coreceptor, to prevent SIVmac239 infection.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) delivery of potent and broadly neutralizing antibodies (bNAbs is a promising approach for the prevention of HIV-1 infection. The immunoglobulin G (IgG)1 subtype is usually selected for this application, because it efficiently mediates antibody effector functions and has a somewhat longer half-life. However, the use of IgG1-Fc has been associated with the generation of anti-drug antibodies (ADAs) that correlate with loss of antibody expression.

View Article and Find Full Text PDF

Systemically delivered adeno-associated viral (AAV) vectors are now in early-phase clinical trials for a variety of diseases. While there is a general consensus on inclusion and exclusion criteria for each of these trials, the conditions under which vectors are infused vary significantly. In this study, we evaluated the impact of intravenous infusion rate of AAV8 vector in cynomolgus macaques on transgene expression, vector clearance from the circulation, and potential activation of the innate immune system.

View Article and Find Full Text PDF

The field of adeno-associated virus (AAV) gene therapy has progressed rapidly over the past decade, with the advent of novel capsid serotype and organ-specific promoters, and an increasing understanding of the immune response to AAV administration. In particular, liver-directed therapy has made remarkable strides, with a number of clinical trials currently planned and ongoing in hemophilia A and B, as well as other liver disorders. This review focuses on liver-directed AAV gene therapy, including historic context, current challenges, and future developments.

View Article and Find Full Text PDF

Long-term in vivo expression of a broad and potent entry inhibitor could circumvent the need for a conventional vaccine for HIV-1. Adeno-associated virus (AAV) vectors can stably express HIV-1 broadly neutralizing antibodies (bNAbs). However, even the best bNAbs neutralize 10-50% of HIV-1 isolates inefficiently (80% inhibitory concentration (IC80) > 5 μg ml(-1)), suggesting that high concentrations of these antibodies would be necessary to achieve general protection.

View Article and Find Full Text PDF

The largest tegument protein of herpes simplex virus 1 (HSV-1), UL36, contains a novel deubiquitinating activity embedded in it. All members of the Herpesviridae contain a homologue of HSV-1 UL36, the N-terminal segments of which show perfect conservation of those residues implicated in catalysis. For murine cytomegalovirus and Epstein-Barr virus, chosen as representatives of the beta- and gammaherpesvirus subfamilies, respectively, we here show that the homologous modules indeed display deubiquitinating activity in vitro.

View Article and Find Full Text PDF

We have discovered a ubiquitin (Ub)-specific cysteine protease encoded within the N-terminal approximately 500 residues of the UL36 gene product, the largest (3164 aa) tegument protein of herpes simplex virus 1 (HSV-1). Enzymatic activity of this fragment, UL36USP, is detectable only after cleavage of UL36USP from full-length UL36 and occurs late during viral replication. UL36USP bears no homology to known deubiquitinating enzymes (DUBs) or Ub binding proteins.

View Article and Find Full Text PDF

Proteins associated with the murine cytomegalovirus (MCMV) viral particle were identified by a combined approach of proteomic and genomic methods. Purified MCMV virions were dissociated by complete denaturation and subjected to either separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and in-gel digestion or treated directly by in-solution tryptic digestion. Peptides were separated by nanoflow liquid chromatography and analyzed by tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF