This study investigates the in vitro degradation properties of composites consisting of a porous tricalcium phosphate (TCP) foam filled with degradable poly(dl-lactic acid) (PDLLA) via either in situ polymerization or infiltration. The motivation was to develop a material for bone repair that would be initially mechanically strong and would develop porosity during degradation of one of the components. A thorough analysis of the physical in vitro degradation properties has been conducted and reported by the same authors elsewhere.
View Article and Find Full Text PDFCo-continuous composites consisting of a porous calcium phosphate matrix (hydroxyapatite, HA, or β-tricalcium phosphate, TCP) filled with poly(D,L-lactide) (PDLLA) were produced with two different methods: in situ polymerization of D,L-lactide monomer inside the matrix, or infiltration of the matrix with molten polymer. The influence of the calcium phosphate matrix as well as the manufacturing method on the degradation were investigated with accelerated in vitro studies at 42 °C in pH 7.4 phosphate-buffered saline (PBS), with some controls at 37 °C.
View Article and Find Full Text PDFThis paper investigates the effects of alpha-tri-calcium phosphate (alpha-TCP) addition on the properties of polylactide-co-glycolide (PLGA). Samples with additions of 5, 10, 15, 20, 30 and 40 wt% alpha-TCP were prepared via a hotpressing method. Long-term in vitro studies (up to 60 days) were carried out in pH 7.
View Article and Find Full Text PDFJ Mater Sci Mater Med
November 2006
Bioactive glass scaffolds have been produced, which meet many of the criteria for an ideal scaffold for bone tissue engineering applications, by foaming sol-gel derived bioactive glasses. The scaffolds have a hierarchical pore structure that is very similar to that of cancellous bone. The degradation products of bioactive glasses have been found to stimulate the genes in osteoblasts.
View Article and Find Full Text PDFA 3D scaffold has been developed that has the potential to fulfil the criteria for an ideal scaffold for bone tissue engineering. Sol-gel derived bioactive glasses of the 70S30C (70 mol% SiO2, 30 mol% CaO) composition have been foamed to produce 3D bioactive scaffolds with hierarchical interconnected pore morphologies similar to trabecular bone. The scaffolds consist of a hierarchical pore network with macropores in excess of 500 microm connected by pore windows with diameters in excess of 100 microm, which is thought to be the minimum pore diameter required for tissue ingrowth and vasularisation in the human body.
View Article and Find Full Text PDF