Publications by authors named "Lisa M Caltabiano"

Female mosquitofish exposed to pulp and paper mill effluent (PME) in the Fenholloway River, Florida, USA have masculinized secondary sex characteristics and altered aromatase enzyme activity. We and others have shown that the Fenholloway River PME contains androgenic and progestogenic substance(s). The present study was designed to test the hypothesis that the development and reproductive health of PME-exposed Fenholloway River mosquitofish are altered compared to mosquitofish living in Econfina River, which is the reference site.

View Article and Find Full Text PDF

We report population-based concentrations (stratified by age, sex, and composite race/ethnicity variables) of selective metabolites of chlorpyrifos (3,5,6-trichloro-2-pyridinol; TCPY), chlorpyrifos methyl (TCPY), malathion (malathion dicarboxylic acid; MDA), diazinon (2-isopropyl-4-methyl-6-hydroxypyrimidine; IMPY), methyl parathion (para-nitrophenol; PNP), and parathion (PNP). We measured the concentrations of TCPY, MDA, IMPY, and PNP in 1997 urine samples from participants, aged 6-59 years, of the National Health and Nutrition Examination Survey, 1999-2000. We detected TCPY in more than 96% of the samples tested.

View Article and Find Full Text PDF

We have developed a method to measure 12 urinary phenolic metabolites of pesticides or related chemicals. The target chemicals for our method are 2-isopropoxyphenol; 2,4-dichlorophenol; 2,5-dichlorophenol; carbofuranphenol; 2,4,5-trichlorophenol; 2,4,6-trichlorophenol; 3,5,6-trichloro-2-pyridinol; para-nitrophenol, ortho-phenylphenol, pentachlorophenol, 1-naphthol and 2-naphthol. The sample preparation involves enzyme hydrolysis, isolation of the target chemicals using solid phase extraction cartridges, a phase-transfer catalyzed derivatization, cleanup using sorbent-immobilized liquid/liquid extraction cartridges, and concentration of the sample.

View Article and Find Full Text PDF

Urinary dialkylphosphate (DAP) metabolites have been used to estimate human exposure to organophosphorus pesticides. We developed a method for quantifying the six DAP urinary metabolites of at least 28 organophosphorus pesticides using lyophilization and chemical derivatization followed by analysis using isotope-dilution gas chromatography-tandem mass spectrometry (GC-MS/MS). Urine samples were spiked with stable isotope analogues of the DAPs and the water was removed from the samples using a lyophilizer.

View Article and Find Full Text PDF

We report population-based concentrations, stratified by age, sex, and racial/ethnic groups, of dialkyl phosphate (DAP) metabolites of multiple organophosphorus pesticides. We measured dimethylphosphate (DMP), dimethylthiophosphate (DMTP), dimethyldithiophosphate (DMDTP), diethylphosphate (DEP), diethylthiophosphate (DETP), and diethyldithiophosphate (DEDTP) concentrations in 1,949 urine samples collected in U.S.

View Article and Find Full Text PDF