Publications by authors named "Lisa M Bernas"

The poor prognosis for patients with high-grade glioma is partly due to the invasion of tumor cells into surrounding brain tissue. The goal of the present work was to develop a mouse model of glioma that included the potential to track cell invasion using MRI by labeling GL261 cells with iron oxide contrast agents prior to intracranial injection. Two types of agents were compared with several labeling schemes to balance between labeling with sufficient iron to curb the dilution effect of cell division while avoiding overwhelming signal loss that could prevent adequate visualization of tumor boundaries.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) is a powerful tool for the diagnosis of disease and the study of biological processes such as cancer metastasis and inflammation. Superparamagnetic iron oxide (SPIO) nanoparticles have been shown to be effective contrast agents for labeling cells to provide high sensitivity in MRI, but this sensitivity depends on the ability to label cells with sufficient quantities of SPIO, which can be challenging for nonphagocytic cells such as cancer cells. To address this issue, a novel cell-penetrating polyester dendron with peripheral guanidines was developed and conjugated to the surface of SPIO.

View Article and Find Full Text PDF

Object: An understanding of single glioma cell invasion has been limited by the static picture provided by histological studies. The ability to nondestructively assess cell invasion dynamically in a full 3D volume would improve the quality and quantity of information available from both in vivo and in vitro experiments. The purpose of this study was to observe glioma cell invasion in a 3D in vitro model using a microimaging protocol at 1.

View Article and Find Full Text PDF

Recently there has been growing interest in the development and use of iron-based contrast agents for cellular imaging with MRI. In this study we investigated coexpression of the transferrin receptor and ferritin genes to induce cellular contrast in a biological system. Expression of transgenic human transferrin receptor and human ferritin H-subunit was induced in a stably transfected mouse neural stem cell line.

View Article and Find Full Text PDF