Background: In Alzheimer's disease (AD), specific brain regions become vulnerable to pathology while others remain resilient. New methods of imaging such as highly multiplexed immunofluorescence (MxIF) provide an abundance of spatial information, while analytical techniques like machine learning (ML) can address questions of cellular contributors to this regional vulnerability.
Method: We performed MxIF staining for 26 markers and compared postmortem human samples from an AD-susceptible brain area, the prefrontal cortex (PFC, Brodmann's areas 9, 10 or 46) to an AD-resilient brain area, the primary visual cortex (V1, area 17).
In this novel large-scale multiplexed immunofluorescence study we comprehensively characterized and compared layer-specific proteomic features within regions of interest of the widely divergent dorsolateral prefrontal cortex (A46) and primary visual cortex (A17) of adult rhesus monkeys. Twenty-eight markers were imaged in rounds of sequential staining, and their spatial distribution precisely quantified within gray matter layers and superficial white matter. Cells were classified as neurons, astrocytes, oligodendrocytes, microglia, or endothelial cells.
View Article and Find Full Text PDFMultiplexed antibody-based imaging enables the detailed characterization of molecular and cellular organization in tissues. Advances in the field now allow high-parameter data collection (>60 targets); however, considerable expertise and capital are needed to construct the antibody panels employed by these methods. Organ mapping antibody panels are community-validated resources that save time and money, increase reproducibility, accelerate discovery and support the construction of a Human Reference Atlas.
View Article and Find Full Text PDFGadolinium based contrast agents (GBCA) are used to image patients using magnetic resonance (MR) imaging. In recent years, there has been controversy around gadolinium retention after GBCA administration. We sought to evaluate the potential toxicity of gadolinium in the rat brain up to 1-year after repeated gadodiamide dosing and tissue retention kinetics after a single administration.
View Article and Find Full Text PDFPurpose: Our aim was to bridge access to voter registration for youth by offering this service within a primary care setting and study the impact of this intervention on voter engagement and the barriers to voter turnout for registered youth voters.
Methods: A total of 120 eligible youth were presented with the opportunity to register to vote within their scheduled medical appointments. Participants were administered a follow-up survey via telephone or within scheduled visits after the 2018 midterm election.
Introduction Missed appointments have been shown to have significant economic consequences on clinics and health systems. Furthermore, adolescents have been shown to miss appointments more frequently than other pediatric patients. Information regarding predictive factors for which patients will miss appointments has been researched for adolescents, but scheduling-related risk factors and the financial impact of missed appointments in an adolescent clinic are lacking.
View Article and Find Full Text PDFPurpose To measure the levels of gadolinium present in the rat brain 1 and 20 weeks after dosing with contrast agent and to determine if there are any histopathologic sequelae. Materials and Methods The study was approved by the GE Global Research Center Institutional Animal Care and Use Committee. Absolute gadolinium levels were quantified in the blood and brains of rats 1 week after dosing and 20 weeks after dosing with up to 20 repeat doses of gadodiamide (cumulative dose, 12 mmol per kilogram of body weight) by using inductively coupled plasma-mass spectrometry.
View Article and Find Full Text PDFContrast Media Mol Imaging
November 2013
Tumor-associated macrophages (TAM) maintain a chronic inflammation in cancers, which is associated with tumor aggressiveness and poor prognosis. The purpose of this study was to: (1) evaluate the pharmacokinetics and tolerability of the novel ultrasmall superparamagnetic iron oxide nanoparticle (USPIO) compound GEH121333; (2) assess whether GEH121333 can serve as a MR imaging biomarker for TAM; and (3) compare tumor MR enhancement profiles between GEH121333 and ferumoxytol. Blood half-lives of GEH121333 and ferumoxytol were measured by relaxometry (n = 4 each).
View Article and Find Full Text PDFRat legs directly injected with superparamagnetic iron oxide (SPIO) were studied by dual-echo, gradient-echo imaging. The amount of iron injected was estimated using a point dipole model for the SPIO injection site. Saturation magnetization of 6:1 PEG/amino modified silane-coated iron oxide particles with 5- to 6-nm core and 20-25 hydrodynamic diameter was approximately 110 emu/g of iron.
View Article and Find Full Text PDF