Publications by authors named "Lisa Kraemer"

Itaconic acid is produced by mammalian leukocytes upon pro-inflammatory activation. It appears to inhibit bacterial growth and to rewire the metabolism of the host cell by inhibiting succinate dehydrogenase. Yet, it is unknown whether itaconic acid acts only intracellularly, locally in a paracrine fashion, or whether it is even secreted from the inflammatory cells at meaningful levels in peripheral blood of patients with severe inflammation or sepsis.

View Article and Find Full Text PDF

Metabolomic markers associated with incident central adiposity gain were investigated in young adults. In a 9-mo prospective study of university freshmen ( = 264). Blood samples and anthropometry measurements were collected in the first 3 d on campus and at the end of the year.

View Article and Find Full Text PDF

Understanding body size-dependent metal accumulation in aquatic organisms (i.e., metal allometry) is critical in interpreting biomonitoring data.

View Article and Find Full Text PDF

Size of organisms is critical in controlling metal bioavailability and bioaccumulation, while mechanisms of size-related metal bioaccumulation are not fully understood. To investigate the influences of different sources of particle-associated Cu on body size-related Cu bioavailability and bioaccumulation, zebra mussels (Dreissena polymorpha) of different sizes were exposed to stable Cu isotope ((65)Cu) spiked algae (Chlorella vulgaris) or sediments in the laboratory and the Cu tissue concentration-size relationships were compared with that in unexposed mussels. Copper tissue concentrations decreased with mussel size (tissue or shell dry weight) in both unexposed and algal-exposed mussels with similar decreasing patterns, but were independent of size in sediment-exposed mussels.

View Article and Find Full Text PDF

Zebra mussels (Dreissena polymorpha) are filter feeders located near the base of the foodweb and these animals are able to utilize a variety of carbon sources that may also vary seasonally. We conducted both a spatial and a temporal study in order to test the hypotheses: (1) dissolved organic carbon (DOC) concentrations influence Hg accumulation in zebra mussels sampled from a series of lakes and (2) seasonal variations in diet influence Hg accumulation. In the spatial study, we found a significant negative relationship between Hg concentrations and DOC concentrations, suggesting an influence of DOC on Hg bioaccumulation.

View Article and Find Full Text PDF

Stable isotope (111)Cd was spiked into sediments of different organic content levels for 3 days to 2 months. Bioavailability of spiked Cd to deposit-feeders, assessed by in vitro Cd solubilization, generally decreased with contact time but became comparable with that of background Cd after 2 months. This could be explained by the gradual transfer of Cd from the more mobile geochemical phase (carbonate associated phase) to more refractory phases (Fe-Mn oxide associated phase, and organic associated phase) within 2 months.

View Article and Find Full Text PDF

The objectives of our study were: (1) to determine if there was significant uranium (U) bioaccumulation in a lake that had been historically affected by a U mine and (2) to use a combined approach of gut content examination and stable nitrogen and carbon isotope analysis to determine if U bioaccumulation in fish was linked to foodweb ecology. We collected three species of fish: smallmouth bass (Micropterus dolomieu), yellow perch (Perca flavescens) and bluegill (Lepomis macrochirus), in addition to several invertebrate species including freshwater bivalves (family: Sphaeriidae), dragonfly nymphs (order: Odonata), snails (class: Gastropoda) and zooplankton (family: Daphniidae). Results showed significant U bioaccumulation in the lake impacted by historical mining activities.

View Article and Find Full Text PDF

Solubilization of particulate Cu by different solutions, mimicking digestive fluids of deposit-feeders, was quantified in stable isotope (65)Cu-spiked sediments (with 3 days-2 months Cu-sediment contact time or aging). Copper solubilization generally decreased with prolonged aging. However, such decrease became less evident after 1 month and equilibrium of Cu in sediments could be reached after 2 months.

View Article and Find Full Text PDF

Yellow perch (Perca flavescens) undergo several ontogenetic dietary shifts, and consequently these fish feed at different trophic levels and rely on different carbon sources over their lifetime. Stable isotope ratios of nitrogen (δ(15)N) and carbon (δ(13)C) are powerful ecological tools that are used to provide a temporally integrated description of the feeding ecology of aquatic animals such as fish. The main objective of this study was to use stable isotopes of nitrogen and carbon to determine if dietary changes affected mercury (Hg) and zinc (Zn) accumulation in yellow perch ranging in size from approximately 5 cm to 27 cm.

View Article and Find Full Text PDF

Many northern indigenous populations are exposed to elevated concentrations of contaminants through traditional food and many of these contaminants come from regions exterior to the Arctic. Global contaminant pathways include the atmosphere, ocean currents, and river outflow, all of which are affected by climate. In addition to these pathways, precipitation, animal availability, UV radiation, cryosphere degradation and human industrial activities in the North are also affected by climate change.

View Article and Find Full Text PDF

Temporal fluctuations in metal (Cd and Cu) concentrations were monitored over four months (May to August) in the liver of juvenile yellow perch (Perca flavescens) sampled from four lakes situated along a metal concentration gradient in northwestern Quebec: Lake Opasatica (reference lake, low metal concentrations), Lake Vaudray (moderate metal concentrations) and lakes Osisko and Dufault (high metal levels). The objectives of this study were to determine if hepatic metal concentrations and metal-handling strategies at the sub-cellular level varied seasonally. Our results showed that Cd and Cu concentrations varied most, in both absolute and relative values, in fish with the highest hepatic metal concentrations, whereas fish sampled from the reference lake did not show any significant variation.

View Article and Find Full Text PDF

Currently little is known about how and at what rate fish eliminate metals in natural environments. To address this knowledge gap we examined metal elimination kinetics in the field using juvenile yellow perch (Perca flavescens) that were caught in a metal-contaminated lake (elevated levels of Cd, Cu and Zn) and transplanted to cages held within a reference lake. Fish were sampled from the cages over 75 d and changes in metal concentrations were measured in the gills, gut, liver and kidney.

View Article and Find Full Text PDF

Juvenile yellow perch (Perca flavescens) were caught in a reference lake and transplanted to cages held within a lake impacted by mining activities, with elevated levels of aqueous bioavailable copper (Cu(2+)), zinc (Zn(2+)) and cadmium (Cd(2+)). Fish were sampled from the cages over 70 d and changes in metal concentrations were followed over time in the gills, gut, liver and kidney. In addition, the hepatic sub-cellular partitioning of the three metals was determined by differential centrifugation of liver samples, yielding the following fractions: cellular debris; organelles; heat-denaturable proteins (HDP); and heat-stable proteins (HSP) (including metallothionein).

View Article and Find Full Text PDF