Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease characterized by the accumulation of aggregated amyloid beta (Aβ) and hyperphosphorylated tau along with a slow decline in cognitive functions. Unlike advanced AD, the initial steps of AD pathophysiology have been poorly investigated, partially due to limited availability of animal models focused on the early, plaque-free stages of the disease. The aim of this study was to evaluate the early behavioral, anatomical and molecular alterations in wild-type rats following intracerebroventricular injections of human Aβ oligomers (AβOs).
View Article and Find Full Text PDFSeveral protein kinases, including protein kinase C, Ca/calmodulin-dependent protein kinase II, and extracellular signal-regulated kinase, play key roles in the regulation of dopamine transporter (DAT) functions. These functions include surface expression, internalization, and forward and reverse transport, with phosphorylation sites for these kinases being linked to distinct regions of the DAT N terminus. Protein phosphatases (PPs) also regulate DAT activity, but the specific residues associated with their activities have not yet been elucidated.
View Article and Find Full Text PDFThe ferrous iron transporter FeoB is an important factor in the iron metabolism of many bacteria. Although several structural studies have been performed on its cytosolic GTPase domain (NFeoB), the full-length structure of FeoB remains elusive. Based on a crystal packing analysis that was performed on crystals of NFeoB, a trimeric structure of the FeoB channel was proposed, where the transport pore runs along the trimer axis.
View Article and Find Full Text PDFAddiction to psychostimulants (ie, amphetamines and cocaine) imposes a major socioeconomic burden. Prevention and treatment represent unmet medical needs, which may be addressed, if the mechanisms underlying psychostimulant action are understood. Cocaine acts as a blocker at the transporters for dopamine (DAT), serotonin (SERT), and norepinephrine (NET), but amphetamines are substrates that do not only block the uptake of monoamines but also induce substrate efflux by promoting reverse transport.
View Article and Find Full Text PDF