Publications by authors named "Lisa Kockeritz"

The tumor-initiating cell (TIC) frequency of bulk tumor cell populations is one of the criteria used to distinguish malignancies that follow the cancer stem cell model from those that do not. However, tumor-initiating cell frequencies may be influenced by experimental conditions and the extent to which tumors have progressed, parameters that are not always addressed in studies of these cells. We employed limiting dilution cell transplantation of minimally manipulated tumor cells from mammary tumors of several transgenic mouse models to determine their tumor-initiating cell frequency.

View Article and Find Full Text PDF

We investigated the role of Lef1, one of the four transcription factors that transmit Wnt signaling to the genome, in the regulation of bone mass. Microcomputed tomographic analysis of 13- and 17-week-old mice revealed significantly reduced trabecular bone mass in Lef1(+/-) females compared to littermate wild-type females. This was attributable to decreased osteoblast activity and bone formation as indicated by histomorphometric analysis of bone remodeling.

View Article and Find Full Text PDF

Based on extensive preclinical data, glycogen synthase kinase-3 (GSK-3) has been proposed to be a viable drug target for a wide variety of disease states, ranging from diabetes to bipolar disorder. Since these new drugs, which will be more powerful GSK-3 inhibitors than lithium, may potentially be given to women of childbearing potential, and since it has controversially been suggested that lithium therapy might be linked to congenital cardiac defects, we asked whether GSK-3 family members are required for normal heart development in mice. We report that terminal cardiomyocyte differentiation was substantially blunted in Gsk3b(-/-) embryoid bodies.

View Article and Find Full Text PDF

In mammalian cells, glycogen synthase kinase-3 (GSK-3) exists as two homologs, GSK-3alpha and GSK-3beta, encoded by independent genes, which share similar kinase domains but differ substantially in their termini. Here, we describe the generation of an allelic series of mouse embryonic stem cell (ESC) lines with 0-4 functional GSK-3 alleles and examine GSK-3-isoform function in Wnt/beta-catenin signaling. No compensatory upregulation in GSK-3 protein levels or activity was detected in cells lacking either GSK-3alpha or GSK-3beta, and Wnt/beta-catenin signaling was normal.

View Article and Find Full Text PDF

Glycogen synthase kinase-3 (GSK-3) has attracted much scrutiny due to its plethora of cellular functions, novel mechanisms of regulation and its potential as a therapeutic target for several common diseases. In mammals, GSK-3 is encoded by two genes, termed GSK-3alpha and GSK-3beta, that yield related but distinct protein-serine kinases. GSK-3 is unusual in that its protein kinase activity tends to be high in resting cells and cellular stimuli, such as hormones and growth factors, result in its catalytic inactivation.

View Article and Find Full Text PDF

The control of IL-10 production and mechanisms that mediate synergy between IFN-gamma and TLR ligands are not well understood. We report that IFN-gamma augments induction of TNFalpha by TLR ligands, immune complexes, and zymosan by suppressing IL-10 production and thereby interrupting Stat3-mediated feedback inhibition. IFN-gamma altered TLR2-induced signal transduction by increasing GSK3 activity and suppressing MAPK activation, leading to diminished IL-10 production.

View Article and Find Full Text PDF

Dopamine (DA) is a neurotransmitter involved in the control of locomotion, emotion, cognition, and reward. Administration of lithium salts is known to inhibit DA-associated behaviors in experimental animal models through unknown mechanisms. Here, we used a pharmacogenetic approach to show that DA can exert its behavioral effects by acting on a lithium-sensitive signaling cascade involving Akt/PKB and glycogen synthase kinase 3 (GSK-3).

View Article and Find Full Text PDF

Control and treatment of chronic pain remain major clinical challenges. Progress may be facilitated by a greater understanding of the mechanisms underlying pain processing. Here we show that the calcium-sensing protein DREAM is a transcriptional repressor involved in modulating pain.

View Article and Find Full Text PDF