Phylogenomics reveals reticulate evolution to be widespread across taxa, but whether reticulation is due to low statistical power or it is a true evolutionary pattern remains a field of study. Here, we investigate the phylogeny and quantify reticulation in the Drosophila saltans species group, a Neotropical clade of the subgenus Sophophora comprising 23 species whose relationships have long been problematic. Phylogenetic analyses revealed conflicting topologies between the X chromosome, autosomes and the mitochondria.
View Article and Find Full Text PDFHybridization and the consequent introgression of genomic elements is an important source of genetic diversity for biological lineages. This is particularly evident in young clades in which hybrid incompatibilities are still incomplete and mixing between species is more likely to occur. Drosophila paulistorum, a representative of the Neotropical Drosophila willistoni subgroup, is a classic model of incipient speciation.
View Article and Find Full Text PDFWolbachia is a widespread, vertically transmitted bacterial endosymbiont known for manipulating arthropod reproduction. Its most common form of reproductive manipulation is cytoplasmic incompatibility (CI), observed when a modification in the male sperm leads to embryonic lethality unless a compatible rescue factor is present in the female egg. CI attracts scientific attention due to its implications for host speciation and in the use of Wolbachia for controlling vector-borne diseases.
View Article and Find Full Text PDFWolbachia is a maternally inherited obligate endosymbiont that can induce a wide spectrum of effects in its host, ranging from mutualism to reproductive parasitism. At the genomic level, recombination within and between strains, transposable elements, and horizontal transfer of strains between host species make Wolbachia an evolutionarily dynamic bacterial system. The invasive cherry fruit fly Rhagoletis cingulata arrived in Europe from North America ~40 years ago, where it now co-occurs with the native cherry pest R.
View Article and Find Full Text PDFCytoplasmic incompatibility is a selfish reproductive manipulation induced by the endosymbiont Wolbachia in arthropods. In males Wolbachia modifies sperm, leading to embryonic mortality in crosses with Wolbachia-free females. In females, Wolbachia rescues the cross and allows development to proceed normally.
View Article and Find Full Text PDFThe application of Wolbachia in insect pest and vector control requires the establishment of genotypically stable host associations. The cytoplasmic incompatibility (CI) inducing Wolbachia strain wCer2 naturally occurs in the cherry fruit fly Rhagoletis cerasi as co-infection with other strains and was transferred to other fruit fly species by embryonic microinjections. We obtained wCer2 genome data from its native and three novel hosts, Drosophila simulans, Drosophila melanogaster, and Ceratitis capitata and assessed its genome stability, characteristics, and CI factor (cif) genes.
View Article and Find Full Text PDFBackground: The Neotropical fruit fly Drosophila paulistorum (Diptera: Drosophilidae) is a species complex in statu nascendi comprising six reproductively isolated semispecies, each harboring mutualistic Wolbachia strains. Although wild type flies of each semispecies are isolated from the others by both pre- and postmating incompatibilities, mating between semispecies and successful offspring development can be achieved once flies are treated with antibiotics to reduce Wolbachia titer. Here we use RNA-seq to study the impact of Wolbachia on D.
View Article and Find Full Text PDFG3 (Bethesda)
January 2018
In "Retrotransposons Are the Major Contributors to the Expansion of the Muller F Element," Leung (2017) improved contigs attributed to the Muller F element from the original CAF1 assembly, and used them to conclude that most of the sequence expansion of the fourth chromosome of is due to a higher transposon load than previously thought, but is not due to DNA integrations. While we do not disagree with the first conclusion, the authors base their second conclusion on the lack of homology detected between their improved CAF1 genome assembly attributed to and reference genomes. While the consensus CAF1 genome assembly lacks any sequence similarity to the reference genome of the endosymbiont of (Mel), numerous studies from multiple laboratories provide experimental support for a large lateral/horizontal gene transfer (LGT) of a genome into this line.
View Article and Find Full Text PDFGenome reduction is a hallmark of symbiotic genomes, and the rate and patterns of gene loss associated with this process have been investigated in several different symbiotic systems. However, in long-term host-associated coevolving symbiont clades, the genome size differences between strains are normally quite small and hence patterns of large-scale genome reduction can only be inferred from distant relatives. Here we present the complete genome of a Coxiella-like symbiont from Rhipicephalus turanicus ticks (CRt), and compare it with other genomes from the genus Coxiella in order to investigate the process of genome reduction in a genus consisting of intracellular host-associated bacteria with variable genome sizes.
View Article and Find Full Text PDFBackground: Lateral gene transfer (LGT) from bacterial Wolbachia endosymbionts has been detected in ~20% of arthropod and nematode genome sequencing projects. Many of these transfers are large and contain a substantial part of the Wolbachia genome.
Results: Here, we re-sequenced three D.
Background: Detecting intracellular bacterial symbionts can be challenging when they persist at very low densities. Wolbachia, a widespread bacterial endosymbiont of invertebrates, is particularly challenging. Although it persists at high titers in many species, in others its densities are far below the detection limit of classic end-point Polymerase Chain Reaction (PCR).
View Article and Find Full Text PDFThe multiple displacement amplification method has revolutionized genomic studies of uncultured bacteria, where the extraction of pure DNA in sufficient quantity for next-generation sequencing is challenging. However, the method is problematic in that it amplifies the target DNA unevenly, induces the formation of chimeric reads and also amplifies contaminating DNA. Here, we have tested the reproducibility of the multiple displacement amplification method using serial dilutions of extracted genomic DNA and intact cells from the cultured endosymbiont Bartonella australis.
View Article and Find Full Text PDFThe importance of host-specialization to speciation processes in obligate host-associated bacteria is well known, as is also the ability of recombination to generate cohesion in bacterial populations. However, whether divergent strains of highly recombining intracellular bacteria, such as Wolbachia, can maintain their genetic distinctness when infecting the same host is not known. We first developed a protocol for the genome sequencing of uncultivable endosymbionts.
View Article and Find Full Text PDFAnkyrin repeat domain-encoding genes are common in the eukaryotic and viral domains of life, but they are rare in bacteria, the exception being a few obligate or facultative intracellular Proteobacteria species. Despite having a reduced genome, the arthropod strains of the alphaproteobacterium Wolbachia contain an unusually high number of ankyrin repeat domain-encoding genes ranging from 23 in wMel to 60 in wPip strain. This group of genes has attracted considerable attention for their astonishing large number as well as for the fact that ankyrin proteins are known to participate in protein-protein interactions, suggesting that they play a critical role in the molecular mechanism that determines host-Wolbachia symbiotic interactions.
View Article and Find Full Text PDFSynthetic genomics is a new field of research in which small DNA pieces are assembled in a series of steps into whole genomes. The highly reduced genomes of host-associated bacteria are now being used as models for de novo synthesis of small genomes in the laboratory. Bacteria with the smallest genomes identified in nature provide nutrients to their hosts, such as amino acids, co-factors and vitamins.
View Article and Find Full Text PDFThe obligate intracellular bacterium Wolbachia pipientis infects around 20% of all insect species. It is maternally inherited and induces reproductive alterations of insect populations by male killing, feminization, parthenogenesis, or cytoplasmic incompatibility. Here, we present the 1,445,873-bp genome of W.
View Article and Find Full Text PDFBackground: The evolutionary importance of horizontal gene transfer (HGT) from Wolbachia endosymbiotic bacteria to their eukaryotic hosts is a topic of considerable interest and debate. Recent transfers of genome fragments from Wolbachia into insect chromosomes have been reported, but it has been argued that these fragments may be on an evolutionary trajectory to degradation and loss.
Results: We have discovered a case of HGT, involving two adjacent genes, between the genomes of Wolbachia and the currently Wolbachia-uninfected mosquito Aedes aegypti, an important human disease vector.
The obligate intracellular bacterium Wolbachia pipientis strain wPip induces cytoplasmic incompatibility (CI), patterns of crossing sterility, in the Culex pipiens group of mosquitoes. The complete sequence is presented of the 1.48-Mbp genome of wPip which encodes 1386 coding sequences (CDSs), representing the first genome sequence of a B-supergroup Wolbachia.
View Article and Find Full Text PDFBackground: Wolbachia are obligate endosymbiotic bacteria maternally transmitted through the egg cytoplasm that are responsible for several reproductive disorders in their insect hosts, such as cytoplasmic incompatibility (CI) in infected mosquitoes. Species in the Culex pipiens complex display an unusually high number of Wolbachia-induced crossing types, and based on present data, only the wPip strain is present.
Results: The sequencing of the wPip strain of Wolbachia revealed the presence of 60 ankyrin repeat domain (ANK) encoding genes and expression studies of these genes were carried out in adult mosquitoes.
A large majority of bacterial genomes show strand asymmetry, such that G and T preferentially accumulate on the leading strand. The mechanisms are unknown, but cytosine deaminations are thought to play an important role. Here, we have examined DNA strand asymmetry in three strains of the aphid endosymbiont Buchnera aphidicola.
View Article and Find Full Text PDFSeveral attempts have been made to identify the minimal set of genes that is required for life using computational approaches or studies of deletion mutants. These experiments resemble those already performed by nature; a few hundred million years ago an ancestor of Escherichia coli was domesticated by aphids, which resulted in the elimination of 70-75% of the original bacterial genome. Amazingly, the small genomes of these imprisoned bacteria are more stable than those of their free-living relatives.
View Article and Find Full Text PDFWe are interested in quantifying the contribution of gene acquisition, loss, expansion and rearrangements to the evolution of microbial genomes. Here, we discuss factors influencing microbial genome divergence based on pair-wise genome comparisons of closely related strains and species with different lifestyles. A particular focus is on intracellular pathogens and symbionts of the genera Rickettsia, Bartonella and BUCHNERA: Extensive gene loss and restricted access to phage and plasmid pools may provide an explanation for why single host pathogens are normally less successful than multihost pathogens.
View Article and Find Full Text PDFComparative genome analyses of close relatives have yielded exciting insight into the sources of microbial genome variability with respect to gene content, gene order and evolution of genes with unknown functions. The genomes of free-living bacteria often carry phages and repetitive sequences that mediate genomic rearrangements in contrast to the small genomes of obligate host-associated bacteria. This suggests that genomic stability correlates with the genomic content of repeated sequences and movable genetic elements, and thereby with bacterial lifestyle.
View Article and Find Full Text PDF