Publications by authors named "Lisa Johansen"

Outbreaks of Ebola ebolavirus (EBOV) have been associated with high morbidity and mortality. Milestones have been reached recently in the management of EBOV disease (EVD) with licensure of an EBOV vaccine and two monoclonal antibody therapies. However, neither vaccines nor therapies are available for other disease-causing filoviruses.

View Article and Find Full Text PDF

Neglected diseases caused by arenaviruses such as Lassa virus (LASV) and filoviruses like Ebola virus (EBOV) primarily afflict resource-limited countries, where antiviral drug development is often minimal. Previous studies have shown that many approved drugs developed for other clinical indications inhibit EBOV and LASV and that combinations of these drugs provide synergistic suppression of EBOV, often by blocking discrete steps in virus entry. We hypothesize that repurposing of combinations of orally administered approved drugs provides effective suppression of arenaviruses.

View Article and Find Full Text PDF

Background: A need to develop therapeutics to treat Ebola virus disease patients in remote and resource-challenged settings remains in the wake of the 2013-2016 epidemic in West Africa. Toward this goal, we screened drugs under consideration as treatment options and other drugs of interest, most being small molecules approved by the Food and Drug Administration. Drugs demonstrating in vitro antiviral activity were advanced for evaluation in combinations because of advantages often provided by drug cocktails.

View Article and Find Full Text PDF

Unlabelled: Filoviruses, consisting of Ebola virus (EBOV) and Marburg virus (MARV), are among the most lethal infectious threats to mankind. Infections by these viruses can cause severe hemorrhagic fevers in humans and nonhuman primates with high mortality rates. Since there is currently no vaccine or antiviral therapy approved for humans, there is an urgent need to develop prophylactic and therapeutic options for use during filoviral outbreaks and bioterrorist attacks.

View Article and Find Full Text PDF

Currently, no approved therapeutics exist to treat or prevent infections induced by Ebola viruses, and recent events have demonstrated an urgent need for rapid discovery of new treatments. Repurposing approved drugs for emerging infections remains a critical resource for potential antiviral therapies. We tested ~2600 approved drugs and molecular probes in an in vitro infection assay using the type species, Zaire ebolavirus.

View Article and Find Full Text PDF

Outbreaks of emerging infections present health professionals with the unique challenge of trying to select appropriate pharmacologic treatments in the clinic with little time available for drug testing and development. Typically, clinicians are left with general supportive care and often untested convalescent-phase plasma as available treatment options. Repurposing of approved pharmaceutical drugs for new indications presents an attractive alternative to clinicians, researchers, public health agencies, drug developers, and funding agencies.

View Article and Find Full Text PDF

Ebola viruses remain a substantial threat to both civilian and military populations as bioweapons, during sporadic outbreaks, and from the possibility of accidental importation from endemic regions by infected individuals. Currently, no approved therapeutics exist to treat or prevent infection by Ebola viruses. Therefore, we performed an in vitro screen of Food and Drug Administration (FDA)- and ex-US-approved drugs and selected molecular probes to identify drugs with antiviral activity against the type species Zaire ebolavirus (EBOV).

View Article and Find Full Text PDF

Ebola virus (EBOV) is an enveloped RNA virus that causes hemorrhagic fever in humans and non-human primates. Infection requires internalization from the cell surface and trafficking to a late endocytic compartment, where viral fusion occurs, providing a conduit for the viral genome to enter the cytoplasm and initiate replication. In a concurrent study, we identified clomiphene as a potent inhibitor of EBOV entry.

View Article and Find Full Text PDF

Anthrax lethal toxin (LT) is the major virulence factor for Bacillus anthracis. The lethal factor (LF) component of this bipartite toxin is a protease which, when transported into the cellular cytoplasm, cleaves mitogen-activated protein kinase kinase (MEK) family proteins and induces rapid toxicity in mouse macrophages through activation of the Nlrp1b inflammasome. A high-throughput screen was performed to identify synergistic LT-inhibitory drug combinations from within a library of approved drugs and molecular probes.

View Article and Find Full Text PDF
Article Synopsis
  • * Statin drugs targeting the sterol pathway have not shown consistent results, but the researchers found that different targets along this pathway can either hinder or help antiviral effects.
  • * By focusing on downstream enzymes in the sterol pathway, the research identifies novel combination therapies that effectively inhibit Hepatitis C replication while minimizing toxicity to the host.
View Article and Find Full Text PDF

Drug combinations are a promising strategy to overcome the compensatory mechanisms and unwanted off-target effects that limit the utility of many potential drugs. However, enthusiasm for this approach is tempered by concerns that the therapeutic synergy of a combination will be accompanied by synergistic side effects. Using large scale simulations of bacterial metabolism and 94,110 multi-dose experiments relevant to diverse diseases, we provide evidence that synergistic drug combinations are generally more specific to particular cellular contexts than are single agent activities.

View Article and Find Full Text PDF

Combination therapy has proven successful in treating a wide variety of aggressive human cancers. Historically, combination treatments have been discovered through serendipity or lengthy trials using known anticancer agents with similar indications. We have used combination high-throughput screening to discover the unexpected synergistic combination of an antiparasitic agent, pentamidine, and a phenothiazine antipsychotic, chlorpromazine.

View Article and Find Full Text PDF

In a number of organisms, transgenes containing transcribed inverted repeats (IRs) that produce hairpin RNA can trigger RNA-mediated silencing, which is associated with 21-24 nucleotide small interfering RNAs (siRNAs). In plants, IR-driven RNA silencing also causes extensive cytosine methylation of homologous DNA in both the transgene "trigger" and any other homologous DNA sequences--"targets". Endogenous genomic sequences, including transposable elements and repeated elements, are also subject to RNA-mediated silencing.

View Article and Find Full Text PDF

Multicellular eukaryotes produce small RNA molecules (approximately 21-24 nucleotides) of two general types, microRNA (miRNA) and short interfering RNA (siRNA). They collectively function as sequence-specific guides to silence or regulate genes, transposons, and viruses and to modify chromatin and genome structure. Formation or activity of small RNAs requires factors belonging to gene families that encode DICER (or DICER-LIKE [DCL]) and ARGONAUTE proteins and, in the case of some siRNAs, RNA-dependent RNA polymerase (RDR) proteins.

View Article and Find Full Text PDF

The transcription factor C/EBP alpha (CCAAT/enhancer binding protein alpha) is critical for granulopoiesis. Gene disruption in mice blocks early granulocyte differentiation and disruption of C/EBP alpha function has been implicated in human acute myeloid leukemia (AML), but no systematic structure-function analysis has been undertaken to identify the mechanisms involved in C/EBP alpha-mediated granulocyte differentiation. Here we demonstrate that loss of either of 2 key regions results in disruption of C/EBP alpha granulocytic development: the amino terminus and specific residues residing on the non-DNA binding face of the basic region.

View Article and Find Full Text PDF

The immortalization of human B lymphocytes by Epstein-Barr virus (EBV) requires the virus-encoded transactivator EBNA2 and the products of both viral and cellular genes which serve as EBNA2 targets. In this study, we identified BATF as a cellular gene that is up-regulated dramatically within 24 h following the infection of established and primary human B cells with EBV. The transactivation of BATF is mediated by EBNA2 in a B-cell-specific manner and is duplicated in non-EBV-infected B cells by the expression of mammalian Notch proteins.

View Article and Find Full Text PDF

We describe a case of imported double cutaneous infestation with Dermatobia hominis acquired in Central America. The characteristic clinical picture is a growing furuncular lesion with continuous secretion from a small central orifice. Because of the resemblance to a bacterial infection, there is a risk of diagnostic failure.

View Article and Find Full Text PDF