Background: Colonoscopic screening and surveillance for colorectal cancer could be made safer and more efficient if endoscopists could predict histology without the need to biopsy and perform histopathology on every polyp. Elastic-scattering spectroscopy (ESS), using fiberoptic probes integrated into standard biopsy tools, can assess, both in vivo and in real time, the scattering and absorption properties of tissue related to its underlying pathology.
Aims: The objective of this study was to evaluate prospectively the potential of ESS to predict polyp pathology accurately.
Cancer Epidemiol Biomarkers Prev
November 2014
Background: We have previously reported that colonic pericryptal microvascular blood flow is augmented in the premalignant colonic epithelium, highlighting the increased metabolic demand of the proliferative epithelium as a marker of field carcinogenesis. However, its molecular basis is unexplored. In this study, we assessed the expression of a regulator of the "lipogenic switch," fatty acid synthase (FASN), in early colon carcinogenesis for its potential biomarker utility for concurrent neoplasia.
View Article and Find Full Text PDFMicroRNAs (miRNAs) have been shown to be reliable early biomarkers in a variety of cancers including that of lung. We ascertained whether the biomarker potential of miRNAs could be validated in microscopically normal and easily accessible buccal epithelial brushings from cigarette smokers as a consequence of lung cancer linked 'field carcinogenesis'. We found that compared to neoplasia-free subjects, a panel of 68 miRNAs were upregulated and 3 downregulated in the normal appearing buccal mucosal cells collected from patients harboring lung cancer (n=76).
View Article and Find Full Text PDFBackground: In 10% to 15% of individuals, inflammatory bowel disease (IBD) is difficult to classify as ulcerative colitis (UC) or Crohn's disease (CD). Previous work has demonstrated that probe-based elastic scattering spectroscopy (ESS) can produce spectra, informed by parameters like tissue ultrastructure and hemoglobin content, capable of differentiating pathologies. This study investigates whether ESS is an in vivo optical biomarker for the presence, activity, and type of IBD in the colon.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
November 2013
Glucose-dependent insulinotropic polypeptide (GIP) secreted from jejunal mucosal K cells augments insulin secretion and plays a critical role in the pathogenesis of obesity and Type 2 diabetes mellitus. In recent studies, we have shown GIP directly activates Na-glucose cotransporter-1 (SGLT1) and enhances glucose absorption in mouse jejunum. It is not known whether GIP would also regulate other intestinal nutrient absorptive processes.
View Article and Find Full Text PDFIn order to counter the common perception that molecular diagnostics are too complicated to work in low resource settings, we have performed a difficult sample preparation and DNA amplification protocol using instrumentation designed to be operated without wall or battery power. In this work we have combined a nearly electricity-free nucleic acid extraction process with an electricity-free isothermal amplification assay to detect the presence of Clostridium difficile (C. difficile) DNA in the stool of infected patients.
View Article and Find Full Text PDFGlucose-dependent insulinotropic polypeptide (GIP) is a mammalian incretin hormone released into the circulation following nutrient ingestion. We examined the functional evolution of GIP and its relationship with insulin to delineate their respective roles in promoting nutrient efficiency. Expression patterns were examined in the sea lamprey (Petromyzon marinus), a basal vertebrate lacking a distinct pancreas, and in the zebrafish, Xenopus laevis, chicken, and mouse, organisms possessing extraintestinal pancreata.
View Article and Find Full Text PDFGlucose-dependent insulinotropic polypeptide (GIP), an important component of the enteroinsular axis, is a potent stimulator of insulin secretion, functioning to maintain nutrient efficiency. Although well-characterized in mammals, little is known regarding GIP transcriptional regulation in Danio rerio (Dr). We previously demonstrated that DrGIP is expressed in the intestine and the pancreas, and we therefore cloned the Dr promoter to compare GIP transcriptional regulation in Dr and mammals.
View Article and Find Full Text PDFAlthough numerous epidemiological studies have provided convincing evidence for an increase in the prevalence of colorectal cancer (CRC) in obese individuals, the precise mechanisms involved have not been elucidated. Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal regulatory peptide whose primary physiologic role is to stimulate postprandial pancreatic insulin secretion. Like insulin, GIP has been linked to enhanced nutrient efficiency, which occurred during the course of evolution.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
December 2009
In mammals, glucose-dependent insulinotropic polypeptide (GIP) is synthesized predominately in the small intestine and functions in conjunction with insulin to promote nutrient deposition. However, little is known regarding GIP expression and function in early vertebrates like the zebrafish, a model organism representing an early stage in the evolutionary development of the compound vertebrate pancreas. Analysis of GIP and insulin (insa) expression in zebrafish larvae by RT-PCR demonstrated that although insa was detected as early as 24 h postfertilization (hpf), GIP expression was not demonstrated until 72 hpf, shortly after the completion of endocrine pancreatic development but prior to the commencement of independent feeding.
View Article and Find Full Text PDFA thorough examination of glucose-dependent insulinotropic polypeptide (GIP) expression has been hampered by difficulty in isolating widely dispersed, GIP-producing enteroendocrine K-cells. To elucidate the molecular mechanisms governing the regulation of GIP expression, 14 intestinal and pancreatic cell lines were assessed for their suitability for studies examining GIP expression. Both STC-1 cells and the pancreatic cell line betaTC-3 were found to express GIP mRNA and secrete biologically active GIP.
View Article and Find Full Text PDFThe physiological effects of glucose-dependent insulinotropic polypeptide (GIP) are mediated through specific receptors expressed on target cells. Because aberrant GIP receptor (GIPR) expression has been implicated in abnormal GIP responses associated with type 2 diabetes mellitus and food-induced Cushing's syndrome, we sought to identify factors that regulate the GIPR. We previously demonstrated that sequences between -1 and -100 of the GIPR gene were sufficient to direct transcription in a rat insulinoma cell line (RIN38).
View Article and Find Full Text PDFGlucose-dependent insulinotropic polypeptide (GIP) is a potent stimulator of insulin secretion and comprises an important component of the enteroinsular axis. GIP is synthesized in enteroendocrine K-cells located principally in the upper small intestine. The homeobox-containing gene PDX-1 is also expressed in the small intestine and plays a critical role in pancreatic development and in the expression of pancreatic-specific genes.
View Article and Find Full Text PDFThe prevalence of esophageal adenocarcinoma in the setting of Barrett's metaplasia continues to increase in Western nations at a rate greater than any other cancer. The trophic properties of gastrin have been documented in gastric, pancreatic and colon cancer cell lines, suggesting a potential role for this regulatory peptide in the growth of these malignancies. The aims of these studies were to identify and characterize the presence of functional cholecystokinin type-2 (gastrin) receptors on the membranes of human esophageal adenocarcinoma cells.
View Article and Find Full Text PDFBackground/aims: Glucose-dependent insulinotropic polypeptide (GIP) is a 42-amino acid gastrointestinal regulatory peptide that, in the presence of glucose, stimulates insulin secretion from beta-cells. GIP is expressed in gastrointestinal K-cells. Prior analysis of the GIP promoter demonstrated that 193 bases of the promoter are required to direct cell specific expression.
View Article and Find Full Text PDF