In the companion article, we developed a modular scheme for representing the kinetics of transcription elongation by RNA polymerase. As an example of how to use these approaches, in this article we use a comprehensive modular model of this sort to fit experimental transcript elongation results obtained on the canonical tR2 template of phage λ by means of complementary bulk gel electrophoresis and surface plasmon resonance assays. The gel electrophoresis results, obtained in experiments quenched at various times after initiation of transcription, provide distributions of RNA lengths as a function of time.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2008
The decision to elongate or terminate the RNA chain at specific DNA template positions during transcription is kinetically regulated, but the methods used to measure the rates of these processes have not been sufficiently quantitative to permit detailed mechanistic analysis of the steps involved. Here, we use surface plasmon resonance (SPR) technology to monitor RNA transcription by Escherichia coli RNA polymerase (RNAP) in solution and in real time. We show that binding of RNAP to immobilized DNA templates to form active initiation or elongation complexes can be resolved and monitored by this method, and that changes during transcription that involve the gain or loss of bound mass, including the release of the sigma factor during the initiation-elongation transition, the synthesis of the RNA transcript, and the release of core RNAP and nascent RNA at intrinsic terminators, can all be observed.
View Article and Find Full Text PDF