Mutations in the transcription factor GATA2 can cause MonoMAC syndrome, a GATA2 deficiency disease characterized by several findings, including disseminated nontuberculous mycobacterial infections, severe deficiencies of monocytes, natural killer cells, and B lymphocytes, and myelodysplastic syndrome. GATA2 mutations are found in ∼90% of patients with a GATA2 deficiency phenotype and are largely missense mutations in the conserved second zinc-finger domain. Mutations in an intron 5 regulatory enhancer element are also well described in GATA2 deficiency.
View Article and Find Full Text PDFPatients with GATA2 deficiencyharbor de novo or inherited germline mutations in the GATA2 transcription factor gene, predisposing them to myeloid malignancies. There is considerable variation in disease progression, even among family members with the same mutation in GATA2. We investigated somatic mutations in 106 patients with GATA2 deficiency to identify acquired mutations that are associated with myeloid malignancies.
View Article and Find Full Text PDFThe zebrafish (Danio rerio) represents an important animal model for analyzing genetic contributors to carcinogenesis. To assess the role for mutationally activated Ras in ovarian cancer, we developed a transgenic zebrafish model using the putative promoter for zebrafish insulin-like growth factor 3 (igf3) to drive expression of the human oncogene KRAS(G12V) fused to EGFP. A member of the IGF family, igf3 is unique to teleosts and reportedly exhibits gonad-specific expression in fish species.
View Article and Find Full Text PDFGermline mutations in the tumor suppressor genes BRCA2 and TP53 significantly influence human cancer risk, and cancers from humans who inherit one mutant allele for BRCA2 or TP53 often display loss of the wildtype allele. In addition, BRCA2-associated cancers often exhibit mutations in TP53. To determine the relationship between germline heterozygous mutation (haploinsufficiency) and somatic loss of heterozygosity (LOH) for BRCA2 and TP53 in carcinogenesis, we analyzed zebrafish with heritable mutations in these two genes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2010
Humans with inherited mutations in BRCA2 are at increased risk for developing breast and ovarian cancer; however, the relationship between BRCA2 mutation and these cancers is not understood. Studies of Brca2 mutation by gene targeting in mice are limited, given that homozygous Brca2 mutation typically leads to early embryonic lethality. We established a zebrafish line with a nonsense mutation in brca2 exon 11 (brca2(Q658X)), a mutation similar in location and type to BRCA2 mutations found in humans with hereditary breast and ovarian cancer.
View Article and Find Full Text PDFThe mechanism whereby the fusion of EWSR1 with the ETS transcription factor FLI1 contributes to malignant transformation in Ewing sarcoma remains unclear. We show that injection of human or zebrafish EWSR1/FLI1 mRNA into developing zebrafish embryos leads to mitotic defects with multipolar and disorganized mitotic spindles. Expression of human EWSR1/FLI1 in HeLa cells also results in mitotic defects, along with mislocalization of Aurora kinase B, a key regulator of mitotic progression.
View Article and Find Full Text PDFBackground: The Ewing sarcoma breakpoint region 1 gene (EWSR1), also known as EWS, is fused to a number of different partner genes as a result of chromosomal translocation in diverse sarcomas. Despite the involvement of EWSR1 in these diverse sarcomas, the in vivo function of wild type EWSR1 remains unclear.
Principal Findings: We identified two zebrafish EWSR1 orthologues, ewsr1a and ewsr1b, and demonstrate that both genes are expressed maternally, and are expressed ubiquitously throughout zebrafish embryonic development.
Proc Natl Acad Sci U S A
October 2006
Acute lymphoblastic leukemia (ALL) is a clonal disease that evolves through the accrual of genetic rearrangements and/or mutations within the dominant clone. The TEL-AML1 (ETV6-RUNX1) fusion in precursor-B (pre-B) ALL is the most common genetic rearrangement in childhood cancer; however, the cellular origin and the molecular pathogenesis of TEL-AML1-induced leukemia have not been identified. To study the origin of TEL-AML1-induced ALL, we generated transgenic zebrafish expressing TEL-AML1 either ubiquitously or in lymphoid progenitors.
View Article and Find Full Text PDFChildren with the severe phenotype of the genetic immunodeficiency disease leukocyte adhesion deficiency or LAD experience life-threatening bacterial infections because of molecular defects in the leukocyte integrin CD18 molecule and the resultant failure to express the CD11/CD18 adhesion molecules on the leukocyte surface. Hematopoietic stem cell transplantation remains the only definitive therapy for LAD; however, the degree of donor chimerism and particularly the number of CD18(+) donor-derived neutrophils required to reverse the disease phenotype are not known. We performed nonmyeloablative hematopoietic stem cell transplantations from healthy matched littermates in 9 dogs with the canine form of LAD known as CLAD and demonstrate that in the 3 dogs with the lowest level of donor chimerism, less than 500 CD18(+) donor-derived neutrophils/microL in the peripheral blood of the CLAD recipients resulted in reversal of the CLAD disease phenotype.
View Article and Find Full Text PDFThe genetic disease canine leukocyte adhesion deficiency (CLAD) is characterized by recurrent, severe bacterial infections, typically culminating in death by 6 months of age. CLAD is due to a mutation in the leukocyte integrin CD18 subunit, which prevents surface expression of the CD11/CD18 leukocyte integrin complex. We demonstrate that stable mixed donor:host hematopoietic chimerism, achieved by a non-myeloablative bone marrow transplant from a histocompatible littermate, reverses the disease phenotype in CLAD.
View Article and Find Full Text PDFThe genetic immunodeficiency disease canine leukocyte adhesion deficiency (CLAD) was originally described in juvenile Irish Setters with severe, recurrent bacterial infections. CLAD was subsequently shown to result from a mutation in the leukocyte integrin CD18 subunit which prevents leukocyte surface expression of the CD11/CD18 complex. We describe the development of a mixed-breed CLAD colony with clinical features that closely parallel those described in Irish Setters.
View Article and Find Full Text PDF