The classical paradigm of G protein-coupled receptor (GPCR) signaling via G proteins is grounded in a view that downstream responses are relatively transient and confined to the cell surface, but this notion has been revised in recent years following the identification of several receptors that engage in sustained signaling responses from subcellular compartments following internalization of the ligand-receptor complex. This phenomenon was initially discovered for the parathyroid hormone (PTH) type 1 receptor (PTH1R), a vital GPCR for maintaining normal calcium and phosphate levels in the body with the paradoxical ability to build or break down bone in response to PTH binding. The diverse biological processes regulated by this receptor are thought to depend on its capacity to mediate diverse modes of cyclic adenosine monophosphate (cAMP) signaling.
View Article and Find Full Text PDFClass B G protein-coupled receptors (GPCRs) are notoriously difficult to target by small molecules because their large orthosteric peptide-binding pocket embedded deep within the transmembrane domain limits the identification and development of nonpeptide small molecule ligands. Using the parathyroid hormone type 1 receptor (PTHR) as a prototypic class B GPCR target, and a combination of molecular dynamics simulations and elastic network model-based methods, we demonstrate that PTHR druggability can be effectively addressed. Here we found a key mechanical site that modulates the collective dynamics of the receptor and used this ensemble of PTHR conformers to identify selective small molecules with strong negative allosteric and biased properties for PTHR signaling in cell and PTH actions in vivo.
View Article and Find Full Text PDFMicrocrystal electron diffraction (MicroED) is an electron cryo-microscopy (cryo-EM) technique used to determine molecular structures with crystals that are a millionth the size needed for traditional single-crystal X-ray crystallography. An exciting use of MicroED is in drug discovery and development, where it can be applied to the study of proteins and small molecule interactions, and for structure determination of natural products. The structures are then used for rational drug design and optimization.
View Article and Find Full Text PDFThe parathyroid hormone (PTH) type 1 receptor (PTHR) is a class B G protein–coupled receptor (GPCR) that regulates mineral ion, vitamin D, and bone homeostasis. Activation of the PTHR by PTH induces both transient cell surface and sustained endosomal cAMP production. To address whether the spatial (location) or temporal (duration) dimension of PTHR-induced cAMP encodes distinct biological outcomes, we engineered a biased PTHR ligand (PTH) that elicits cAMP production at the plasma membrane but not at endosomes.
View Article and Find Full Text PDFPeptide ligands of class B G-protein-coupled receptors act via a two-step binding process, but the essential mechanisms that link their extracellular binding to intracellular receptor-arrestin interactions are not fully understood. Using NMR, crosslinking coupled to mass spectrometry, signaling experiments and computational approaches on the parathyroid hormone (PTH) type 1 receptor (PTHR), we show that initial binding of the PTH C-terminal part constrains the conformation of the flexible PTH N-terminal signaling epitope before a second binding event occurs. A 'hot-spot' PTH residue, His9, that inserts into the PTHR transmembrane domain at this second step allosterically engages receptor-arrestin coupling.
View Article and Find Full Text PDFThe parathyroid hormone (PTH) type 1 receptor (PTHR) is the canonical G protein-coupled receptor (GPCR) for PTH and PTH-related protein (PTHrP) and the key regulator of calcium homeostasis and bone turnover. PTHR function is critical for human health to maintain homeostatic control of ionized serum Ca levels and has several unusual signaling features, such as endosomal cAMP signaling, that are well-studied but not structurally understood. In this review, we discuss how recently solved high resolution near-atomic structures of hormone-bound PTHR in its inactive and active signaling states and discovery of extracellular Ca allosterism shed light on the structural basis for PTHR signaling and function.
View Article and Find Full Text PDFThe parathyroid hormone receptor-1 (PTH1R) is a class B G protein-coupled receptor central to calcium homeostasis and a therapeutic target for osteoporosis and hypoparathyroidism. Here we report the cryo-electron microscopy structure of human PTH1R bound to a long-acting PTH analog and the stimulatory G protein. The bound peptide adopts an extended helix with its amino terminus inserted deeply into the receptor transmembrane domain (TMD), which leads to partial unwinding of the carboxyl terminus of transmembrane helix 6 and induces a sharp kink at the middle of this helix to allow the receptor to couple with G protein.
View Article and Find Full Text PDFThe parathyroid hormone (PTH) and its related peptide (PTHrP) activate PTH receptor (PTHR) signaling, but only the PTH sustains G-mediated adenosine 3',5'-cyclic monophosphate (cAMP) production after PTHR internalization into early endosomes. The mechanism of this unexpected behavior for a G-protein-coupled receptor is not fully understood. Here, we show that extracellular Ca acts as a positive allosteric modulator of PTHR signaling that regulates sustained cAMP production.
View Article and Find Full Text PDFMany cellular functions necessitate structural assemblies of two or more associated proteins. The structural characterization of protein complexes using standard methods, such as X-ray crystallography, is challenging. Herein, we describe an orthogonal approach using hydrogen-deuterium-exchange mass spectrometry (HDXMS), cross-linking mass spectrometry (CXMS), and disulfide trapping to map interactions within protein complexes.
View Article and Find Full Text PDFJ Am Acad Child Adolesc Psychiatry
May 2016
Objective: To examine access to psychiatric care for adolescents with depression in outpatient specialty clinics within a state mental health system, using a simulated patient approach.
Method: Trained callers posed as the mother of a 14-year-old girl with depression, following a script. A stratified random sample (n = 264) of 340 state-licensed outpatient mental health clinics that serve youth was selected.
Objective: Characteristics associated with participation in training in evidence-informed business and clinical practices by 346 outpatient mental health clinics licensed to treat youths in New York State were examined.
Methods: Clinic characteristics extracted from state administrative data were used as proxies for variables that have been linked with adoption of innovation (extraorganizational factors, agency factors, clinic provider-level profiles, and clinic client-level profiles). Multiple logistic regression models were used to assess the independent effects of theoretical variables on the clinics' participation in state-supported business and clinical trainings between September 2011 and August 2013 and on the intensity of participation (low or high).
A fragment-based screen against human immunodeficiency virus type 1 (HIV) integrase led to a number of compounds that bound to the lens epithelium derived growth factor (LEDGF) binding site of the integrase catalytic core domain. We determined the crystallographic structures of complexes of the HIV integrase catalytic core domain for 10 of these compounds and quantitated the binding by surface plasmon resonance. We demonstrate that the compounds inhibit the interaction of LEDGF with HIV integrase in a proximity AlphaScreen assay, an assay for the LEDGF enhancement of HIV integrase strand transfer and in a cell based assay.
View Article and Find Full Text PDF