Esophageal atresia with tracheoesophageal fistula (EA/TEF) is a serious human birth defect, in which the esophagus ends before reaching the stomach, and is aberrantly connected with the trachea. Several mouse models of EA/TEF have recently demonstrated that proper dorsal/ventral (D/V) patterning of the primitive anterior foregut endoderm is essential for correct compartmentalization of the trachea and esophagus. Here we elucidate the pathogenic mechanisms underlying the EA/TEF that occurs in mice lacking the BMP antagonist Noggin, which display correct dorsal/ventral patterning.
View Article and Find Full Text PDFNeural crest development is orchestrated by a complex and still poorly understood gene regulatory network. Premigratory neural crest is induced at the lateral border of the neural plate by the combined action of signaling molecules and transcription factors such as AP2, Gbx2, Pax3 and Zic1. Among them, Pax3 and Zic1 are both necessary and sufficient to trigger a complete neural crest developmental program.
View Article and Find Full Text PDFBackground: Soon after birth, all mammals must initiate milk suckling to survive. In rodents, this innate behavior is critically dependent on uncharacterized maternally derived chemosensory ligands. Recently, the first pheromone sufficient to initiate suckling was isolated from the rabbit.
View Article and Find Full Text PDFNoggin is an antagonist of bone morphogenetic proteins (BMP), and its overexpression causes suppressed osteoblastogenesis and osteopenia. Global inactivation of Noggin results in severe developmental defects and prenatal lethality, but the consequences of the conditional inactivation of Noggin on the postnatal skeleton are not known. To study the function of noggin in osteoblasts, we generated tissue-specific null Noggin mice by mating Noggin conditional mice, where the Noggin allele is flanked by loxP sequences, with mice expressing the Cre recombinase under the control of the osteocalcin promoter (Oc-Cre).
View Article and Find Full Text PDFInductive signals from adjacent tissues initiate differentiation within the somite. In this study, we used mouse embryos mutant for the BMP antagonists noggin (Nog) and gremlin 1 (Grem1) to characterize the effects of BMP signaling on the specification of the sclerotome. We confirmed reduction of Pax1 and Pax9 expression in Nog mutants, but found that Nog;Grem1 double mutants completely fail to initiate sclerotome development.
View Article and Find Full Text PDFSignaling from rhombomeres 5 and 6 of the hindbrain is thought to be important for inner ear patterning. In Noggin -/- embryos, the gross anatomy of the inner ear is distorted and malformed, with cochlear duct outgrowth and coiling most affected. We attributed these defects to a caudal shift of the rhombomeres caused by the shortened body axis and the kink in the neural tube.
View Article and Find Full Text PDFSeveral investigations have demonstrated a precise balance to exist between bone morphogenetic protein (BMP) agonists and antagonists, dictating BMP signaling and osteogenesis. We report a novel approach to manipulate BMP activity through a down-regulation of the potent BMP antagonist Noggin, and examined the effects on the bone forming capacity of osteoblasts. Reduction of noggin enhanced BMP signaling and in vitro osteoblast bone formation, as demonstrated by both gene expression profiles and histological staining.
View Article and Find Full Text PDFHow olfactory sensory neurons converge on spatially invariant glomeruli in the olfactory bulb is largely unknown. In one model, olfactory sensory neurons interact with spatially restricted guidance cues in the bulb that orient and guide them to their target. Identifying differentially expressed molecules in the olfactory bulb has been extremely difficult, however, hindering a molecular analysis of convergence.
View Article and Find Full Text PDFWe describe the effects of the overexpression of noggin, a bone morphogenetic protein (BMP) inhibitor, on osteoblast differentiation and bone formation. Cells of the osteoblast and chondrocyte lineages, as well as bone marrow macrophages, showed intense beta-gal histo- or cytostaining in adult noggin+/- mice that had a LacZ transgene inserted at the site of noggin deletion. Despite identical BMP levels, however, osteoblasts of 20-month-old C57BL/6J and 4-month-old senescence-accelerated mice (SAM-P6 mice) had noggin expression levels that were approximately fourfold higher than those of 4-month-old C57BL/6J and SAM-R1 (control) mice, respectively.
View Article and Find Full Text PDFDuring limb outgrowth, signaling by bone morphogenetic proteins (BMPs) must be moderated to maintain the signaling loop between the zone of polarizing activity (ZPA) and the apical ectodermal ridge (AER). Gremlin, an extracellular Bmp antagonist, has been proposed to fulfill this function and therefore be important in limb patterning. We tested this model directly by mutating the mouse gene encoding gremlin (Cktsf1b1, herein called gremlin).
View Article and Find Full Text PDFDuring skull development, the cranial connective tissue framework undergoes intramembranous ossification to form skull bones (calvaria). As the calvarial bones advance to envelop the brain, fibrous sutures form between the calvarial plates. Expansion of the brain is coupled with calvarial growth through a series of tissue interactions within the cranial suture complex.
View Article and Find Full Text PDFMembers of the bone morphogenetic protein family of secreted protein signals have been implicated as axon guidance cues for specific neurons in Caenorhabditis elegans and in mammals. We have examined axonal pathfinding in mice lacking the secreted bone morphogenetic protein antagonist Noggin. We have found defects in projection of several groups of neurons, including the initial ascending projections from the dorsal root ganglia, motor axons innervating the distal forelimb, and cranial nerve VII.
View Article and Find Full Text PDF