Publications by authors named "Lisa I Stephens"

Scanning electrochemical microscopy (SECM) has matured as a technique for studying local electrochemical processes. The feedback mode is most commonly used for extracting quantitative kinetic information. However, approaching individual regions of interest, as is commonly done, does not take full advantage of the spatial resolution that SECM has to offer.

View Article and Find Full Text PDF

To achieve super-resolution scanning electrochemical microscopy (SECM), we must overcome the theoretical limitation associated with noncontact electrochemical imaging of surface-generated species. This is the requirement for mass transfer to the electrode, which gives rise to the diffusional broadening of surface features. In this work, a procedure is developed for overcoming this limitation and thus generating "super-resolved" images using point spread function (PSF)-based deconvolution, where the point conductor plays the same role as the point emitter in optical imaging.

View Article and Find Full Text PDF

The edge of a reactive or topographical feature is hard to estimate from feedback-based scanning electrochemical microscopy due to diffusional blurring, but is crucial to determining the accurate size and shape of these features. In this work, numerical simulations are used to demonstrate that the inflection point in a 1D line scan corresponds well to the true feature edge. This approach is then applied in 2D using the Canny algorithm to experimental images of two model substrates and a biological sample.

View Article and Find Full Text PDF

One of the long-standing challenges to performing electrogenerated chemiluminescence (ECL) research is the need for dedicated instrumentation or highly customized cells to achieve reproducibility. This manuscript describes an approach to designing ECL systems through the hyphenation of existing laboratory instruments, which provide innate time correlation of electrochemical and emission data. This design methodology lowers the entry barrier required to obtaining reproducible ECL measurements and provides flexibility in the scope of applications.

View Article and Find Full Text PDF

The nonuniform diffusion profile to the edge of many multifunctional microelectrodes has the potential to give rise to distortions in its imaging capability, reducing the spatial accuracy of the techniques they are used in. In this work, numerical simulations are used to predict these distortions for dual-barrel electrodes used in the combined feedback/generation-collection mode of scanning electrochemical microscopy imaging a model substrate. The sensitivity of this distortion to tip-substrate distance, electrolyte composition, and size and shape of a reactive substrate feature are discussed.

View Article and Find Full Text PDF