Publications by authors named "Lisa Hoogenboom"

Marine elasmobranchs are ureosmotic, retaining large concentrations of urea to balance their internal osmotic pressure with that of the external marine environment. The synthesis of urea requires the intake of exogenous nitrogen to maintain whole-body nitrogen balance and satisfy obligatory osmoregulatory and somatic processes. We hypothesized that dietary nitrogen may be directed toward the synthesis of specific nitrogenous molecules in post-fed animals; specifically, we predicted the preferential accumulation and retention of labelled nitrogen would be directed towards the synthesis of urea necessary for osmoregulatory purposes.

View Article and Find Full Text PDF

For ureosmotic marine elasmobranchs, the acquisition and retention of nitrogen is critical for the synthesis of urea. To better understand whole-body nitrogen homeostasis, we investigated mechanisms of nitrogen trafficking in North Pacific spiny dogfish (Squalus acanthias suckleyi). We hypothesized that the presence of nitrogen within the spiral valve lumen would affect both the transport of nitrogen and the mRNA abundance of a urea transporter (UT) and two ammonia transport proteins (Rhp2, Rhbg) within the intestinal epithelium.

View Article and Find Full Text PDF

As part of their osmoregulatory strategy, marine elasmobranchs retain large quantities of urea to balance the osmotic pressure of the marine environment. The main source of nitrogen used to synthesize urea comes from the digestion and absorption of food across the gastrointestinal tract. In this study we investigated possible mechanisms of nitrogen movement across the spiral valve of the cloudy catshark (Scyliorhinus torazame) through the molecular identification of two Rhesus glycoprotein ammonia transporters (Rhp2 and Rhbg) and a urea transporter (UT).

View Article and Find Full Text PDF

A holistic understanding of a physiological system can be accomplished through the use of multiple methods. Our current understanding of the fish gastrointestinal tract (GIT) and its role in both nutrient handling and osmoregulation is the result of the examination of the GIT using multiple reductionist methods. This review summarizes the following methods: in vivo mass balance studies, and in vitro gut sac preparations, intestinal perfusions, and Ussing chambers.

View Article and Find Full Text PDF

Marine elasmobranchs are nitrogen-limited owing to the requirement of nitrogen for both somatic growth and urea-based osmoregulation, and due to the loss of urea across the gills and kidney as nitrogenous waste. In this study we used in vitro stomach and intestinal gut sacs to investigate the effects of consuming a urea-rich meal (700 mM within a 2% body-mass ration of food-slurry) on nitrogen movement across the gastrointestinal (GI) tract of North Pacific spiny dogfish (Squalus acanthias suckleyi). Plasma urea concentrations did not differ between fasted (359 ± 19 mM), urea-poor fed (340 ± 16 mM), and urea-rich fed (332 ± 24 mM) dogfish.

View Article and Find Full Text PDF

Ureotelic elasmobranchs require nitrogen for both protein growth and urea-based osmoregulation, and therefore are probably nitrogen-limited in nature. Mechanisms exist for retaining and/or scavenging nitrogen in the gills, kidney, rectal gland and gut, but as yet, the latter are not well characterized. Intestinal sac preparations of the Pacific spiny dogfish shark () incubated strongly reabsorbed urea from the lumen after feeding, but mucosal fluid ammonia concentrations increased with incubation time.

View Article and Find Full Text PDF

The molecular properties of the sulfonylurea receptor 2 (SUR2) subunits of K(ATP) channels expressed in urinary bladder were assessed by polymerase chain reaction (PCR). This showed that SUR2B exon 17- mRNA (72%) was predominant over the SUR2B exon 17+ splice variant (28%). The pharmacological properties of both of these isoforms stably expressed in mouse Ltk(-)cells (L-cells) with K(IR) 6.

View Article and Find Full Text PDF