Small molecules interact with proteins to perturb their functions, a property that has been exploited both for research applications and to produce therapeutic agents for disease treatment. Commonly utilized approaches for identifying the target proteins for a small molecule have limitations in terms of throughput and resource consumption and lack a mechanism to broadly assess the selectivity profile of the small molecule. Here we describe how protein microarray technology can be applied to the study of small molecule-protein interactions using tritiated small molecules.
View Article and Find Full Text PDFProtein microarrays are similar to DNA microarrays; both enabling the parallel interrogation of thousands of probes immobilized on a surface. Consequently, they have benefited from technologies previously developed for DNA microarrays. However, assumptions for the analysis of DNA microarrays do not always translate to protein arrays, especially in the case of normalization.
View Article and Find Full Text PDFWe used proteins with randomized transmembrane (TM) domains to explore the role of hydrophobic amino acids in mediating specific interactions between transmembrane helices. The 44-aa bovine papillomavirus E5 protein, which binds to the TM domain of the PDGFbeta receptor (PDGFbetaR) was used as a scaffold to construct a library encoding small dimeric proteins with randomized, strictly hydrophobic TM domains, and proteins were selected that induced focus formation in mouse C127 cells by activating the PDGFbetaR. Analysis of these proteins identified a motif of two hydrophobic residues that, when inserted into a 17-residue polyleucine TM domain, generated a protein that activated the PDGFbetaR and transformed cells.
View Article and Find Full Text PDFViruses have been subjected to intense study because of their medical importance and because they can provide fundamental insights into normal and pathological cellular processes. Indeed, much of our knowledge about basic cellular biology and biochemistry was acquired through the study of viruses, and some of medicine's greatest triumphs and challenges involve viruses. Since viruses have evolved to exploit important cell processes, they can provide tools and approaches to manipulate cell function.
View Article and Find Full Text PDFThe 44 amino acid E5 transmembrane protein is the primary oncogene product of bovine papillomavirus. Homodimers of the E5 protein activate the cellular PDGF beta receptor tyrosine kinase by binding to its transmembrane domain and inducing receptor dimerization, resulting in cellular transformation. To investigate the role of transmembrane hydrophilic amino acids in receptor activation, we constructed a library of dimeric small transmembrane proteins in which 16 transmembrane amino acids of the E5 protein were replaced with random, predominantly hydrophobic amino acids.
View Article and Find Full Text PDFIn Schizosaccharomyces pombe, three genes, sir2(+), hst2(+), and hst4(+), encode members of the Sir2 family of conserved NAD(+)-dependent protein deacetylases. The S. pombe sir2(+) gene encodes a nuclear protein that is not essential for viability or for resistance to treatment with UV or a microtubule-destabilizing agent.
View Article and Find Full Text PDFGrowth factor receptors are typically activated by the binding of soluble ligands to the extracellular domain of the receptor, but certain viral transmembrane proteins can induce growth factor receptor activation by binding to the receptor transmembrane domain. For example, homodimers of the transmembrane 44-amino acid bovine papillomavirus E5 protein bind the transmembrane region of the PDGF beta receptor tyrosine kinase, causing receptor dimerization, phosphorylation, and cell transformation. To determine whether it is possible to select novel biologically active transmembrane proteins that can activate growth factor receptors, we constructed and identified small proteins with random hydrophobic transmembrane domains that can bind and activate the PDGF beta receptor.
View Article and Find Full Text PDF