For centuries scientists and technologists have sought artificial leg replacements that fully capture the versatility of their intact biological counterparts. However, biological gait requires coordinated volitional and reflexive motor control by complex afferent and efferent neural interplay, making its neuroprosthetic emulation challenging after limb amputation. Here we hypothesize that continuous neural control of a bionic limb can restore biomimetic gait after below-knee amputation when residual muscle afferents are augmented.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2022
Food fortification is an effective strategy to address vitamin A (VitA) deficiency, which is the leading cause of childhood blindness and drastically increases mortality from severe infections. However, VitA food fortification remains challenging due to significant degradation during storage and cooking. We utilized an FDA-approved, thermostable, and pH-responsive basic methacrylate copolymer (BMC) to encapsulate and stabilize VitA in microparticles (MPs).
View Article and Find Full Text PDFBackground: Elucidating underlying mechanisms in subject-specific motor control and perception after amputation could guide development of advanced surgical and neuroprosthetic technologies. In this study, relationships between preserved agonist-antagonist muscle strain within the residual limb and preserved motor control and perception capacity are investigated.
Methods: Fourteen persons with unilateral transtibial amputations spanning a range of ages, etiologies, and surgical procedures underwent evaluations involving free-space mirrored motions of their lower limbs.
For persons with lower extremity (LE) amputation, acquisition of surface electromyography (sEMG) from within the prosthetic socket remains a significant challenge due to the dynamic loads experienced during the gait cycle. However, these signals are critical for both understanding the clinical effects of LE amputation and determining the desired control trajectories of active LE prostheses. Current solutions for collecting within-socket sEMG are generally (i) incompatible with a subject's prescribed prosthetic socket and liners, (ii) uncomfortable, and (iii) expensive.
View Article and Find Full Text PDFProc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron
October 2020
Acquisition of surface electromyography (sEMG) from a person with an amputated lower extremity (LE) during prosthesis-assisted walking remains a significant challenge due to the dynamic nature of the gait cycle. Current solutions to sEMG-based neural control of active LE prostheses involve a combination of customized electrodes, prosthetic sockets, and liners. These technologies are generally: (i) incompatible with a subject's existing prosthetic socket and liners; (ii) uncomfortable to use; and (iii) expensive.
View Article and Find Full Text PDFDespite advancements in prosthetic technologies, patients with amputation today suffer great diminution in mobility and quality of life. We have developed a modified below-knee amputation (BKA) procedure that incorporates agonist-antagonist myoneural interfaces (AMIs), which surgically preserve and couple agonist-antagonist muscle pairs for the subtalar and ankle joints. AMIs are designed to restore physiological neuromuscular dynamics, enable bidirectional neural signaling, and offer greater neuroprosthetic controllability compared to traditional amputation techniques.
View Article and Find Full Text PDFMicronutrient deficiencies affect up to 2 billion people and are the leading cause of cognitive and physical disorders in the developing world. Food fortification is effective in treating micronutrient deficiencies; however, its global implementation has been limited by technical challenges in maintaining micronutrient stability during cooking and storage. We hypothesized that polymer-based encapsulation could address this and facilitate micronutrient absorption.
View Article and Find Full Text PDFThe development of mechanically functional cartilage and bone tissue constructs of clinically relevant size, as well as their integration with native tissues, remains an important challenge for regenerative medicine. The objective of this study was to assess adult human mesenchymal stem cells (MSCs) in large, three-dimensionally woven poly(ε-caprolactone; PCL) scaffolds in proximity to viable bone, both in a nude rat subcutaneous pouch model and under simulated conditions in vitro. In Study I, various scaffold permutations-PCL alone, PCL-bone, "point-of-care" seeded MSC-PCL-bone, and chondrogenically precultured Ch-MSC-PCL-bone constructs-were implanted in a dorsal, ectopic pouch in a nude rat.
View Article and Find Full Text PDFMulti-material polymer scaffolds with multiscale pore architectures were characterized and tested with vascular and heart cells as part of a platform for replacing damaged heart muscle. Vascular and muscle scaffolds were constructed from a new material, poly(limonene thioether) (PLT32i), which met the design criteria of slow biodegradability, elastomeric mechanical properties, and facile processing. The vascular-parenchymal interface was a poly(glycerol sebacate) (PGS) porous membrane that met different criteria of rapid biodegradability, high oxygen permeance, and high porosity.
View Article and Find Full Text PDFA photocurable thiol-ene network polymer, poly(limonene thioether) (PLT32o), is synthesized, characterized, fabricated into tissue engineering scaffolds, and demonstrated in vitro and in vivo. Micromolded PLT32o grids exhibit compliant, elastomeric mechanical behavior similar to grids made of poly(glycerol sebacate) (PGS), an established biomaterial. Multilayered PL32o scaffolds with regular, geometrically defined pore architectures support heart cell seeding and culture in a manner similar to multilayered PGS scaffolds.
View Article and Find Full Text PDFMitral valve prolapse (MVP) is a common cardiac valve disease that affects nearly 1 in 40 individuals. It can manifest as mitral regurgitation and is the leading indication for mitral valve surgery. Despite a clear heritable component, the genetic aetiology leading to non-syndromic MVP has remained elusive.
View Article and Find Full Text PDFScalable units for building cardiac tissue are fabricated from biodegradable elastomeric polymers by pairwise stacking of heart-cell scaffolds with sinusoidal internal pore architectures and dedicated perfusable microvessels with rapidly degrading porous interfaces in a parallel flow configuration. This platform supports viable heart cells in vitro and, if validated in vivo, may aid in the regenerative repair of vascularized tissues.
View Article and Find Full Text PDFToward developing biologically sound models for the study of heart regeneration and disease, we cultured heart cells on a biodegradable, microfabricated poly(glycerol sebacate) (PGS) scaffold designed with micro-structural features and anisotropic mechanical properties to promote cardiac-like tissue architecture. Using this biomimetic system, we studied individual and combined effects of supplemental insulin-like growth factor-1 (IGF-1) and electrical stimulation (ES). On culture day 8, all tissue constructs could be paced and expressed the cardiac protein troponin-T.
View Article and Find Full Text PDFA biodegradable microvessel scaffold comprised of distinct parenchymal and vascular compartments separated by a permeable membrane interface was conceptualized, fabricated, cellularized, and implanted. The device was designed with perfusable microfluidic channels on the order of 100 μm to mimic small blood vessels, and high interfacial area to an adjacent parenchymal space to enable transport between the compartments. Poly(glycerol sebacate) (PGS) elastomer was used to construct the microvessel framework, and various assembly methods were evaluated to ensure robust mechanical integrity.
View Article and Find Full Text PDFMicrofabricated elastomeric scaffolds with 3D structural patterns are created by semiautomated layer-by-layer assembly of planar polymer sheets with through-pores. The mesoscale interconnected pore architectures governed by the relative alignment of layers are shown to direct cell and muscle-like fiber orientation in both skeletal and cardiac muscle, enabling scale up of tissue constructs towards clinically relevant dimensions.
View Article and Find Full Text PDFTissue-engineered constructs, at the interface of material science, biology, engineering, and medicine, have the capacity to improve outcomes for cardiac patients by providing living cells and degradable biomaterials that can regenerate the native myocardium. With an ultimate goal of both delivering cells and providing mechanical support to the healing heart, we designed three-dimensional (3D) elastomeric scaffolds with (1) stiffnesses and anisotropy mimicking explanted myocardial specimens as predicted by finite-element (FE) modeling, (2) systematically varied combinations of rectangular pore pattern, pore aspect ratio, and strut width, and (3) structural features approaching tissue scale. Based on predicted mechanical properties, three scaffold designs were selected from eight candidates for fabrication from poly(glycerol sebacate) by micromolding from silicon wafers.
View Article and Find Full Text PDFMulti-layered poly(glycerol-sebacate) (PGS) scaffolds with controlled pore microarchitectures were fabricated, combined with heart cells, and cultured with perfusion to engineer contractile cardiac muscle constructs. First, one-layered (1L) scaffolds with accordion-like honeycomb shaped pores and elastomeric mechanical properties were fabricated by laser microablation of PGS membranes. Second, two-layered (2L) scaffolds with fully interconnected three dimensional pore networks were fabricated by oxygen plasma treatment of 1L scaffolds followed by stacking with off-set laminae to produce a tightly bonded composite.
View Article and Find Full Text PDFTissue engineering seeks to restore the function of diseased or damaged tissues through the use of cells and biomaterial scaffolds. It is now apparent that the next generation of functional tissue replacements will require advanced material strategies to achieve many of the important requirements for long-term success. Here we provide representative examples of engineered skeletal and myocardial tissue constructs in which scaffolds were explicitly designed to match native tissue mechanical properties as well as to promote cell alignment.
View Article and Find Full Text PDFPolymer scaffolds that direct elongation and orientation of cultured cells can enable tissue engineered muscle to act as a mechanically functional unit. We combined micromolding and microablation technologies to create muscle tissue engineering scaffolds from the biodegradable elastomer poly(glycerol sebacate). These scaffolds exhibited well defined surface patterns and pores and robust elastomeric tensile mechanical properties.
View Article and Find Full Text PDFHuman mesenchymal stem cells (hMSCs) and three-dimensional (3D) woven poly(ɛ-caprolactone) (PCL) scaffolds are promising tools for skeletal tissue engineering. We hypothesized that in vitro culture duration and medium additives can individually and interactively influence the structure, composition, mechanical, and molecular properties of engineered tissues based on hMSCs and 3D poly(ɛ-caprolactone). Bone marrow hMSCs were suspended in collagen gel, seeded on scaffolds, and cultured for 1, 21, or 45 days under chondrogenic and/or osteogenic conditions.
View Article and Find Full Text PDFThree-dimensionally woven poly(epsilon-caprolactone) (PCL) scaffolds were combined with adult human mesenchymal stem cells (hMSC) to engineer mechanically functional cartilage constructs in vitro. The specific objectives were to: (i) produce PCL scaffolds with cartilage-like mechanical properties, (ii) demonstrate that hMSCs formed cartilage after 21 days of culture on PCL scaffolds, and (iii) study effects of scaffold structure (loosely vs. tightly woven), culture vessel (static dish vs.
View Article and Find Full Text PDFPheochromocytomas are widely believed to induce cardiomyopathy via hypersecretion of catecholamines, including norepinephrine (NE). NE can have direct cardiomyocyte toxicity and/or can stimulate myocardial remodeling secondary to the induction of hypertension. Yet, the development of cardiomyopathy is not entirely related to catecholamine dose or the extent of hypertension.
View Article and Find Full Text PDFTissue-engineered grafts may be useful in myocardial repair; however, previous scaffolds have been structurally incompatible with recapitulating cardiac anisotropy. Here, we use microfabrication techniques to create an accordion-like honeycomb microstructure in poly(glycerol sebacate), which yields porous, elastomeric three-dimensional (3D) scaffolds with controllable stiffness and anisotropy. Accordion-like honeycomb scaffolds with cultured neonatal rat heart cells demonstrated utility through: (1) closely matched mechanical properties compared to native adult rat right ventricular myocardium, with stiffnesses controlled by polymer curing time; (2) heart cell contractility inducible by electric field stimulation with directionally dependent electrical excitation thresholds (p<0.
View Article and Find Full Text PDF