Publications by authors named "Lisa F Bischof"

Phosphorylation-dependent interactions play crucial regulatory roles in all domains of life. Forkhead-associated (FHA) and von Willebrand type A (vWA) domains are involved in several phosphorylation-dependent processes of multiprotein complex assemblies. Although well-studied in eukaryotes and bacteria, the structural and functional contexts of these domains are not yet understood in Archaea.

View Article and Find Full Text PDF

In Archaea and Bacteria, gene expression is tightly regulated in response to environmental stimuli. In the thermoacidophilic crenarchaeon s nutrient limitation induces expression of the archaellum, the archaeal motility structure. This expression is orchestrated by a complex hierarchical network of positive and negative regulators-the archaellum regulatory network (arn).

View Article and Find Full Text PDF

In natural environments microorganisms encounter extreme changes in temperature, pH, osmolarities and nutrient availability. The stress response of many bacterial species has been described in detail, however, knowledge in Archaea is limited. Here, we describe the cellular response triggered by nutrient limitation in the thermoacidophilic crenarchaeon .

View Article and Find Full Text PDF

In response to a variety of environmental cues, prokaryotes can switch between a motile and a sessile, biofilm-forming mode of growth. The regulatory mechanisms and signaling pathways underlying this switch are largely unknown in archaea but involve small winged helix-turn-helix DNA-binding proteins of the archaea-specific Lrs14 family. Here, we study the Lrs14 member AbfR1 of Sulfolobus acidocaldarius.

View Article and Find Full Text PDF

Type IV pili (T4P) are ubiquitous bacterial cell surface structures, involved in processes such as twitching motility, biofilm formation, bacteriophage infection, surface attachment, virulence, and natural transformation. T4P are assembled by machinery that can be divided into the outer membrane pore complex, the alignment complex that connects components in the inner and outer membrane, and the motor complex in the inner membrane and cytoplasm. Here, we characterize the inner membrane platform protein PilC, the cytosolic assembly ATPase PilB of the motor complex, and the cytosolic nucleotide-binding protein PilM of the alignment complex of the T4P machinery ofMyxococcus xanthus PilC was purified as a dimer and reconstituted into liposomes.

View Article and Find Full Text PDF