Introduction: Airway surface dehydration, caused by an imbalance between secretion and absorption of ions and fluid across the epithelium and/or increased epithelial mucin secretion, impairs mucociliary clearance. Recent evidence suggests that this mechanism may be implicated in chronic obstructive pulmonary disease (COPD). However, the role of airway surface dehydration in the pathogenesis of cigarette smoke (CS)-induced COPD remains unknown.
View Article and Find Full Text PDFNitric oxide (NO) is a gaseotransmitter, which is involved in many signaling processes in health and disease. Three enzymes generate NO from l-arginine, with citrulline formed as a by-product: neuronal NO synthase (nNOS or NOS1), endothelial NOS (eNOS or NOS3) and inducible NOS (iNOS or NOS2). NO is a ligand of soluble guanylyl cyclase (sGC), an intracellular heterodimer enzyme that catalyzes the conversion of guanosine triphosphate (GTP) to cyclic GMP (cGMP).
View Article and Find Full Text PDFBackground: Chronic obstructive pulmonary disease (COPD) arises from an interaction between genetic host factors and environmental exposures (mainly cigarette smoke (CS)). Genome Wide Association studies have demonstrated that genetic variations in the gene encoding 5-hydroxytryptamine 4 receptors (5-HT(4)R), HTR4, were associated with measures of airway obstruction and with COPD. We hypothesised that 5-HT(4) receptors, in addition to 5-HT2AR and muscarinic receptors, contribute to the pathogenesis of COPD by facilitating cholinergic bronchoconstriction.
View Article and Find Full Text PDFRationale: Soluble guanylyl cyclase (sGC), a cyclic guanosine 5'-monophosphate-generating enzyme, regulates smooth muscle tone and exerts antiinflammatory effects in animal models of asthma and acute lung injury. In chronic obstructive pulmonary disease (COPD), primarily caused by cigarette smoke (CS), lung inflammation persists and smooth muscle tone remains elevated, despite ample amounts of nitric oxide that could activate sGC.
Objectives: To determine the expression and function of sGC in patients with COPD and in a murine model of COPD.
Chronic obstructive pulmonary disease is mainly triggered by cigarette smoke (CS) and progresses even after smoking cessation. CS induces an exaggerated influx of inflammatory cells to the bronchoalveolar space and lung parenchyma, likely resulting from a complex interplay between chemoattractants and their respective receptors. In a murine CS model of chronic obstructive pulmonary disease, we studied the importance of chemokine-like receptor ChemR23 for the induction and resolution of inflammation in CS-exposed lungs.
View Article and Find Full Text PDFPeribronchial lymphoid follicles have recently been identified as one of the hallmark features of (severe) chronic obstructive pulmonary disease (COPD). However, little is known about the relative contribution of peribronchial lymphoid follicles vs mediastinal lymph nodes in inflammatory responses in COPD patients and animal models. In a murine model of COPD, we studied inflammatory responses in airways, lungs, and mediastinal lymph nodes of wild-type (WT) vs CCR7 knockout (CCR7(-/-)) mice upon subacute or chronic exposure to cigarette smoke (CS).
View Article and Find Full Text PDF