The recently introduced unified pH ([Formula: see text]) concept enables rigorous pH measurements in non-aqueous and mixed media while at the same time maintaining comparability to the conventional aqueous pH scale. However, its practical application is hindered by a shortage of reference [Formula: see text] values. In order to improve this situation, the European Metrology Research Project (EMPIR) UnipHied ("Realisation of a UnipHied pH scale") launched an interlaboratory comparison among highly experienced electrochemistry expert laboratories to assign the first such reference [Formula: see text] values by adopting an extensive statistical treatment of the reported measurement data: to phosphate buffer in water-ethanol mixture (50 wt% of ethanol) and ammonium formate buffer in pure ethanol.
View Article and Find Full Text PDFThe use of the unified pH concept, [Formula: see text] , applicable to aqueous and non-aqueous solutions, which allows interpreting and comparison of the acidity of different types of solutions, requires reliable and objective determination. The [Formula: see text] can be determined by a single differential potentiometry measurement referenced to an aqueous reference buffer or by a ladder of differential potentiometric measurements that allows minimisation of inconsistencies of various determinations. This work describes and assesses bottom-up evaluations of the uncertainty of these measurements, where uncertainty components are combined by the Monte Carlo Method (MCM) or Taylor Series Approximation (TSM).
View Article and Find Full Text PDFMeasurement of pH in aqueous-organic mixtures with different compositions is of high importance in science and technology, but it is, at the same time, challenging both from a conceptual and practical standpoint. A big part of the difficulty comes from the fundamental incomparability of conventional pH values between solvents (pH, solvent-specific scales). The recent introduction of the unified pH (pH) concept opens up the possibility of measuring pH, expressed as pHabsH2O, in a way that is comparable between solvent, and, thereby, removing the conceptual problem.
View Article and Find Full Text PDFNi-YSZ (yttria-stabilized zirconia) cermets are known to be very good anodes in solid oxide fuel cells (SOFCs), which are typically operated at 700-1000 °C. However, they are expected to be increasingly degraded as the operating temperature is lowered in the presence of H2S (5-10 ppm) in the H2 fuel stream. However, at 500 to 600 °C, a temperature range rarely examined for sulphur poisoning, but of great interest for next generation SOFCs, we report that H2S-exposed Ni-YSZ anodes are catalytic towards the H2 oxidation reaction, rather than poisoned.
View Article and Find Full Text PDFThe influence of the unique, physical properties of poly- and perfluorinated chemicals on vapor pressure was investigated. Vapor pressures of a suite of fluorinated telomer alcohols (FTOHs) (CF3(CF2)nCH2CH2OH, where n = 3, 5, 7, or 9) were measured using the boiling point method and ranged from 144 to 992 Pa. Comparison of experimental and literature values indicate that perfluorocarbons (CF3(CF2)nCF3, where n = 0-6) and fluorinated telomer alcohols have vapor pressures equal to or greater than that of their hydrogen analogues.
View Article and Find Full Text PDF