The adaptor protein Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) plays a central role in T cell activation and T cell development. SLP-76 has three functional modules: an acidic domain with three key tyrosines, a central proline-rich domain, and a C-terminal Src homology 2 domain. Of these, mutation of the three N-terminal tyrosines (Y112, Y128, and Y145) results in the most profound effects on T cell development and function.
View Article and Find Full Text PDFT cells deficient in the Tec kinases Itk or Itk and Rlk exhibit defective TCR-stimulated proliferation, IL-2 production, and activation of phospholipase C-gamma. Evidence also implicates Tec kinases in actin cytoskeleton regulation, which is necessary for cell adhesion and formation of the immune synapse in T lymphocytes. In this study we show that Tec kinases are required for TCR-mediated up-regulation of adhesion via the LFA-1 integrin.
View Article and Find Full Text PDFThe TEC-family protein tyrosine kinases ITK, RLK and TEC have been identified as key components of T-cell-receptor signalling that contribute to the regulation of phospholipase C-gamma, the mobilization of Ca(2+) and the activation of mitogen-activated protein kinases. Recent data also show that TEC kinases contribute to T-cell-receptor-driven actin reorganization and cell polarization, which are required for productive T-cell activation. Functional studies have implicated TEC kinases as important mediators of pathways that control the differentiation of CD4(+) T helper cells.
View Article and Find Full Text PDFThe Tec family tyrosine kinases are now recognized as important mediators of antigen receptor signaling in lymphocytes. Three members of this family, Itk, Rlk, and Tec, are expressed in T cells and activated in response to T cell receptor (TCR) engagement. Although initial studies demonstrated a role for these proteins in TCR-mediated activation of phospholipase C-gamma, recent data indicate that Tec family kinases also regulate actin cytoskeletal reorganization and cellular adhesion following TCR stimulation.
View Article and Find Full Text PDFFollowing stimulation, T cells undergo marked actin-dependent changes in shape that are required for productive cellular interactions and movement during immune responses. Reorganization of the actin cytoskeletal is also necessary for the formation of an immunological synapse - the convergence of several signaling molecules at the plasma membrane that occurs after effective T-cell receptor (TCR) signaling. Much emerging evidence indicates that the Tec family of tyrosine kinases has a role in actin cytoskeleton reorganization.
View Article and Find Full Text PDFActin polymerization at the immune synapse is required for T cell activation and effector function; however, the relevant regulatory pathways remain poorly understood. We showed previously that binding to antigen presenting cells (APCs) induces localized activation of Cdc42 and Wiskott-Aldrich Syndrome protein (WASP) at the immune synapse. Several lines of evidence suggest that Tec kinases could interact with WASP-dependent actin regulatory processes.
View Article and Find Full Text PDFThe Tec kinases represent the second largest family of mammalian non-receptor tyrosine kinases and are distinguished by the presence of distinct proline-rich regions and pleckstrin homology domains that are required for proper regulation and activation. Best studied in lymphocyte and mast cells, these kinases are critical for the full activation of phospholipase-C gamma (PLC-gamma) and Ca(2+) mobilization downstream of antigen receptors. However, it has become increasingly clear that these kinases are activated downstream of many cell-surface receptors, including receptor tyrosine kinases, cytokine receptors, integrins and G-protein-coupled receptors.
View Article and Find Full Text PDFDuring the initial stage of Friend virus-induced erythroleukemia in mice, interaction of the viral protein gp55 with the erythropoietin receptor, and other host factors, drives the expansion of erythroid precursor cells. Recently, we demonstrated that the Friend virus susceptibility locus, Fv2, which is required for the expansion of infected cells, encodes a naturally occurring, N-terminally truncated form of the Stk receptor tyrosine kinase (Sf-Stk). Here we show that in vitro expression of Sf-Stk confers Friend virus sensitivity to erythroid progenitor cells from Fv2(rr) mice.
View Article and Find Full Text PDF