Publications by authors named "Lisa Collier"

Bridging integrator 1 (BIN1) is the second most prevalent genetic risk factor identified by genome-wide association studies (GWAS) for late-onset Alzheimer's disease. BIN1 encodes an adaptor protein that regulates membrane dynamics in the context of endocytosis and neurotransmitter vesicle release. In vitro evidence suggests that BIN1 can directly bind to tau in the cytosol.

View Article and Find Full Text PDF

Background: The BIN1 locus contains the second-most significant genetic risk factor for late-onset Alzheimer's disease. BIN1 undergoes alternate splicing to generate tissue- and cell-type-specific BIN1 isoforms, which regulate membrane dynamics in a range of crucial cellular processes. Whilst the expression of BIN1 in the brain has been characterized in neurons and oligodendrocytes in detail, information regarding microglial BIN1 expression is mainly limited to large-scale transcriptomic and proteomic data.

View Article and Find Full Text PDF

Background: Cystic fibrosis is an inherited disease that predisposes to progressive lung damage. Cystic fibrosis patients are particularly prone to developing pulmonary infections. Fungal species are commonly isolated in lower airway samples from patients with cystic fibrosis.

View Article and Find Full Text PDF

Background: The goal of this study was to determine whether leukemia inhibitory factor (LIF) promotes anti-inflammatory activity after stroke in a sex-dependent manner.

Methods: Aged (18-month-old) Sprague-Dawley rats of both sexes underwent sham surgery or permanent middle cerebral artery occlusion (MCAO). Animals received three doses of intravenous LIF (125 g/kg) or PBS at 6, 24, and 48 h before euthanization at 72 h.

View Article and Find Full Text PDF

Introduction: An outbreak of Influenza B occurred at a large United Kingdom (UK) regional adult cystic fibrosis (CF) centre in May 2016. This was late in the UK 2015-2016 influenza season and occurred on a specialist ward with strict infection control procedures. This study investigates the spread of influenza, clinical consequences and potential contributing factors.

View Article and Find Full Text PDF

Ischemic stroke remains one of the most debilitating diseases and is the fifth leading cause of death in the US. The ability to predict stroke outcomes within the acute period of stroke would be essential for care planning and rehabilitation. The Blood and Clot Thrombectomy Registry and Collaboration (BACTRAC; clinicaltrials.

View Article and Find Full Text PDF

Introduction: Ischemic stroke is the one of the most severe and debilitating diseases, and despite animal models, there is much to learn about the neuropathology in humans in a way that could inform the development of therapies. We have developed a protocol to collect and evaluate arterial blood immediately distal and proximal from the removed intracranial thrombus during mechanical thrombectomy. These samples provide a unique resource in evaluating acute changes in acid/base and electrolyte concentrations at the time of ischemic stroke.

View Article and Find Full Text PDF

Background: Early changes in acid/base and electrolyte concentrations could provide insights into the development of neuropathology at the onset of stroke. We evaluated associations between acid/base and electrolyte concentrations, and outcomes in permanent middle cerebral artery occlusion (pMCAO) model.

Methods: 18-month-old male and female Sprague-Dawley rats underwent pMCAO.

View Article and Find Full Text PDF

The aim of this study was to determine whether leukemia inhibitory factor (LIF) exerts its neuroprotective effects through signal transduction of the transcription factor myeloid zinc finger-1 (MZF-1). According to the hypothesis of this study, MZF-1 mediates LIF-induced neuroprotective signaling during ELVO through increased expression and transcriptional activity. To determine the in vivo role of MZF-1 in LIF-induced neuroprotection, we used Genomatix software was used to MZF-1 sites in the promoter region of the rat superoxide dismutase 3 (SOD3) gene.

View Article and Find Full Text PDF

Preclinical studies using rodent models of stroke have had difficulty in translating their results to human patients. One possible factor behind this inability is the lack of studies utilizing aged rodents of both sexes. Previously, this lab showed that leukemia inhibitory factor (LIF) promoted recovery after stroke through antioxidant enzyme upregulation.

View Article and Find Full Text PDF

Background: The migration of peripheral immune cells and splenocytes to the ischemic brain is one of the major causes of delayed neuroinflammation after permanent large vessel stroke. Other groups have demonstrated that leukemia inhibitory factor (LIF), a cytokine that promotes neural cell survival through upregulation of antioxidant enzymes, promotes an anti-inflammatory phenotype in several types of immune cells. The goal of this study was to determine whether LIF treatment modulates the peripheral immune response after stroke.

View Article and Find Full Text PDF

Background And Purpose: Acid/base and electrolytes could provide clinically valuable information about cerebral infarct core and penumbra. We evaluated associations between acid/base and electrolyte changes and outcomes in 2 rat models of stroke, permanent, and transient middle cerebral artery occlusion.

Methods: Three-month old Sprague-Dawley rats underwent permanent or transient middle cerebral artery occlusion.

View Article and Find Full Text PDF

Background: Ischemic stroke research faces difficulties in translating pathology between animal models and human patients to develop treatments. Mechanical thrombectomy, for the first time, offers a momentary window into the changes occurring in ischemia. We developed a tissue banking protocol to capture intracranial thrombi and the blood immediately proximal and distal to it.

View Article and Find Full Text PDF

Leukemia inhibitory factor (LIF) has been shown to protect oligodendrocytes from ischemia by upregulating endogenous antioxidants. The goal of this study was to determine whether LIF protects neurons during stroke by upregulating superoxide dismutase 3 (SOD3). Animals were administered phosphate-buffered saline (PBS) or 125 μg/kg LIF at 6, 24, and 48 h after middle cerebral artery occlusion or sham surgery.

View Article and Find Full Text PDF

Cerebral edema after stroke is associated with poor neurological outcomes. Current therapies are limited to osmotic agents, such as hypertonic saline (HS), which reduce intracranial pressure. Although studies have demonstrated edema reductions following HS, tissue survival has not been thoroughly examined.

View Article and Find Full Text PDF

The delayed immune response to stroke is responsible for the increased neural injury that continues to occur after the initial ischemic event. This delayed immune response has been linked to the spleen, as splenectomy prior to middle cerebral artery occlusion (MCAO) is neuroprotective. Interferon gamma (IFNγ) is linked to the splenic response, which enhances neural injury following MCAO.

View Article and Find Full Text PDF

Human umbilical cord blood (HUCB) cells have shown efficacy in rodent models of focal ischemia and in vitro systems that recapitulate stroke conditions. One potential mechanism of protection is through secretion of soluble factors that protect neurons and oligodendrocytes (OLs) from oxidative stress. To overcome practical issues with cellular therapies, identification of soluble factors released by HUCB and other stem cells may pave the way for treatment modalities that are safer for a larger percentage of stroke patients.

View Article and Find Full Text PDF

The splenic response to stroke is a proinflammatory reaction to ischemic injury resulting in expanded neurodegeneration. Splenectomy reduces neural injury in rodent models of hemorrhagic and ischemic stroke, however the exact nature of this response has yet to be fully understood. This study examines the migration of splenocytes after brain ischemia utilizing carboxyfluorescein diacetate succinimidyl ester (CFSE) to label them in vivo.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is complex and involves multiple processes that contribute to functional decline. Progressive neuropathies result from delayed cellular death following the initial impact. Although the precise mechanisms responsible for delayed injury are unknown, numerous data implicate a role for the peripheral immune system in perpetuating neuroinflammation after TBI.

View Article and Find Full Text PDF

Delayed neuronal death associated with stroke has been increasingly linked to the immune response to the injury. Splenectomy prior to middle cerebral artery occlusion (MCAO) is neuroprotective and significantly reduces neuroinflammation. The present study investigated whether splenic signaling occurs through interferon gamma (IFNγ).

View Article and Find Full Text PDF

Human umbilical cord blood (HUCB) cells protect the brain against ischemic injury, yet the mechanism of protection remains unclear. Using both in vitro and in vivo paradigms, this study examined the role of Akt signaling and peroxiredoxin 4 expression in human umbilical cord blood cell-mediated protection of oligodendrocytes from ischemic conditions. As previously reported, the addition of HUCB cells to oligodendrocyte cultures prior to oxygen glucose deprivation significantly enhanced oligodendrocyte survival.

View Article and Find Full Text PDF

Many pharmacological treatments for stroke have afforded protection in rodent models but failed to show efficacy in clinical trials. This discrepancy may be due to the lack of long-term functional studies. Previously, delayed administration of the sigma receptor agonist 1,3-di-o-tolylguanidine (DTG) reduced infarct volume after middle cerebral artery occlusion (MCAO) in rats.

View Article and Find Full Text PDF

Secondary neurodegeneration resulting from stroke is mediated by delayed proinflammatory signaling and immune cell activation. Although it remains unknown which cell surface markers signify a proinflammatory phenotype, increased isolectin binding occurs on CD11b-expressing immune cells within injured brain tissue. Several reports have confirmed the efficacy of human umbilical cord blood (HUCB) cell therapy in reducing ischemic injury in rat after middle cerebral artery occlusion (MCAO), and these effects were attributed in part to dampened neuroinflammation.

View Article and Find Full Text PDF

Recent studies have highlighted the involvement of the peripheral immune system in delayed cellular degeneration after stroke. In the permanent middle cerebral artery occlusion (MCAO) model of stroke, the spleen decreases in size. This reduction occurs through the release of splenic immune cells.

View Article and Find Full Text PDF

Background: Hypoxia-ischemia (H-I) can produce widespread neurodegeneration and deep cerebral white matter injury in the neonate. Resident microglia and invading leukocytes promote lesion progression by releasing reactive oxygen species, proteases and other pro-inflammatory mediators. After injury, expression of the gelatin-degrading matrix metalloproteinases (MMPs), MMP-2 and MMP-9, are thought to result in the proteolysis of extracellular matrix (ECM), activation of cytokines/chemokines, and the loss of vascular integrity.

View Article and Find Full Text PDF