Publications by authors named "Lisa C Parker"

The lungs are exposed to a range of environmental toxins (including cigarette smoke, air pollution, asbestos) and pathogens (bacterial, viral and fungal), and most respiratory diseases are associated with local or systemic hypoxia. All of these adverse factors can trigger endoplasmic reticulum (ER) stress. The ER is a key intracellular site for synthesis of secretory and membrane proteins, regulating their folding, assembly into complexes, transport and degradation.

View Article and Find Full Text PDF

Exposure to respiratory pathogens is a leading cause of exacerbations of airway diseases such as asthma and chronic obstructive pulmonary disease (COPD). Pellino-1 is an E3 ubiquitin ligase known to regulate virally-induced inflammation. We wished to determine the role of Pellino-1 in the host response to respiratory viruses in health and disease.

View Article and Find Full Text PDF

Viral infections are a common cause of asthma exacerbations, with human rhinoviruses (RV) the most common trigger. RV signals through a number of different receptors, including toll-like receptor (TLR)3. Tenascin-C (TN-C) is an immunomodulatory extracellular matrix protein present in high quantities in the airway of people with asthma, and expression is also upregulated in nasal lavage fluid in response to RV infection.

View Article and Find Full Text PDF

Inflammatory airway disease, such as asthma and chronic obstructive pulmonary disease (COPD), is a major health burden worldwide. These diseases cause large numbers of deaths each year due to airway obstruction, which is exacerbated by respiratory viral infection. The inflammatory response in the airway is mediated in part through the MAPK pathways: p38, JNK and ERK.

View Article and Find Full Text PDF

Rhinoviral infection is a common trigger of the excessive inflammation observed during exacerbations of asthma and chronic obstructive pulmonary disease. Rhinovirus (RV) recognition by pattern recognition receptors activates the mitogen-activated protein kinase (MAPK) pathways, which are common inducers of inflammatory gene production. A family of dual-specificity phosphatases (DUSPs) can regulate MAPK function, but their roles in rhinoviral infection are not known.

View Article and Find Full Text PDF

Human rhinoviruses (HRV) are a major cause of exacerbations of airways disease. Aspects of cell signalling responses to HRV infection remain unclear, particularly with regard to signalling via PI3K, and the PI3K-dependent pathway, autophagy. We investigated the roles of PI3K and autophagy in the responses of epithelial cells to major and minor group HRV infection.

View Article and Find Full Text PDF

Human Rhinovirus (HRV) is associated with acute exacerbations of chronic respiratory disease. In healthy individuals, innate viral recognition pathways trigger release of molecules with direct anti-viral activities and pro-inflammatory mediators which recruit immune cells to support viral clearance. Interleukin-1alpha (IL-1α), interleukin-1beta (IL-1β) and interleukin-18 (IL-18) have critical roles in the establishment of neutrophilic inflammation, which is commonly seen in airways viral infection and thought to be detrimental in respiratory disease.

View Article and Find Full Text PDF

Air pollution by diesel exhaust particles is associated with elevated mortality and increased hospital admissions in individuals with respiratory diseases such as asthma and chronic obstructive pulmonary disease. During active inflammation monocytes are recruited to the airways and can replace resident alveolar macrophages. We therefore investigated whether chronic fourteen day exposure to low concentrations of diesel exhaust particles can alter the phenotype and function of monocytes from healthy individuals and those with chronic obstructive pulmonary disease.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how neutrophils contribute to inflammation in humans by examining their recruitment and the production of the cytokine CXCL8.
  • In human subjects challenged with endotoxin, a significant local inflammatory response was observed, characterized by a notable increase in CXCL8 mRNA and neutrophil presence.
  • Neutrophils play a crucial role not only in the early release of cytokines like IL-1β but also in the clearance of CXCL8, which varies depending on the type of infection present.
View Article and Find Full Text PDF

Pellino-1 has recently been identified as a regulator of interleukin-1 (IL-1) signaling, but its roles in regulation of responses of human cells to human pathogens are unknown. We investigated the potential roles of Pellino-1 in the airways. We show for the first time that Pellino-1 regulates responses to a human pathogen, rhinovirus minor group serotype 1B (RV-1B).

View Article and Find Full Text PDF

Neutrophils are key innate immune effector cells that are rapidly recruited to sites of infection and inflammation to provide early defence against invading microorganisms. This function is facilitated by the expression of Toll-like receptor (TLR) family members by neutrophils, allowing the recognition of an extensive repertoire of pathogen-associated molecular patterns (PAMPs) and thus triggering the response to invading pathogens. TLR activation leads to important cellular processes including reactive oxygen species (ROS) generation, cytokine production and increased survival, all of which can contribute to the pathogenesis of chronic inflammation when signalling becomes dysregulated.

View Article and Find Full Text PDF

Rhinoviral infection is an important trigger of acute inflammatory exacerbations in patients with underlying airway disease. We have previously established that interleukin-1β (IL-1β) is central in the communication between epithelial cells and monocytes during the initiation of inflammation. In this study we explored the roles of IL-1β and its signaling pathways in the responses of airway cells to rhinovirus-1B (RV-1B) and further determined how responses to RV-1B were modified in a model of bacterial coinfection.

View Article and Find Full Text PDF

The regulation of neutrophil lifespan by induction of apoptosis is critical for maintaining an effective host response and preventing excessive inflammation. The hypoxia-inducible factor (HIF) oxygen-sensing pathway has a major effect on the susceptibility of neutrophils to apoptosis, with a marked delay in cell death observed under hypoxic conditions. HIF expression and transcriptional activity are regulated by the oxygen-sensitive prolyl hydroxylases (PHD1-3), but the role of PHDs in neutrophil survival is unclear.

View Article and Find Full Text PDF

The processing and regulated secretion of IL-1beta are critical points of control of the biological activity of this important pro-inflammatory cytokine. IL-1beta is produced by both monocytes and macrophages, but the rate and mechanism of release differ according to the differentiation status and the origin of these cells. We aimed to study the control of processing and release in human blood monocytes and human monocyte-derived macrophages.

View Article and Find Full Text PDF

Neutrophils are crucial components of our defence against microbial assault. They are short-lived cells, with regulation of their lifespan being a primary mechanism involved in the regulation of their function. Delay of apoptosis facilitates their clearance of pathogens, whilst appropriate induction of cell death facilitates wound healing.

View Article and Find Full Text PDF

TLRs detect conserved molecular patterns that are unique to microbes, enabling tailored responses to invading pathogens and modulating a multitude of immunopathological conditions. We investigated the ability of a naturally occurring stearoyl-arachidonoyl form of phosphatidylserine (SAPS) to inhibit the proinflammatory effects of TLR agonists in models of inflammation investigating the interaction of leukocytes with epithelial and endothelial cells. The responses to LPS of both epithelial and endothelial cells were highly amplified in the presence of PBMCs.

View Article and Find Full Text PDF

Macrophage migration inhibitory factor (MIF) plays vital roles in the regulation of responses to stimuli acting via Toll-like receptor (TLR)-4. Recently, a specific small molecule inhibitor of MIF (ISO-1) has been described. We investigated the effects of ISO-1 on TLR responses in primary human monocytes and monocyte-derived macrophages (MDM).

View Article and Find Full Text PDF

The challenges of chronic obstructive pulmonary disease and the difficulties in modeling its pathology in vitro and in vivo are substantial. Integration of innate- and adaptive-type responses with processes of scarring and healing do not fit comfortably with some definitions of the immune system, and, instead, this disease is an exemplar of a network-based system that we have named "contiguous immunity." The complicated and highly interconnected networks underpinning many biological processes show features of scale-free networks.

View Article and Find Full Text PDF

Developing new treatments for chronic obstructive pulmonary disease (COPD) is extremely challenging. This disease, chronic by definition, becomes apparent only after substantial-and probably irreversible-tissue damage has occurred. The observable phenotype is of a stable disease state whose progression is hard to influence and reversal of which appears almost impossible.

View Article and Find Full Text PDF

Recent advances in the field of innate immunity have driven an important reappraisal of the role of these processes in airway disease. Various strands of evidence indicate that resident cells, such as macrophages and epithelial cells, have central importance in the initiation of inflammation. Macrophage activation has the potential to regulate not just typical aspects of innate immunity but also, via a variety of intricate cell-cell networks, adaptive responses and responses characterized by Th2-type cytokine production.

View Article and Find Full Text PDF

Viral and bacterial pathogens cause inflammation via Toll-like receptor (TLR) signaling. We have shown that effective responses to LPS may depend on cooperative interactions between TLR-expressing leukocytes and TLR-negative tissue cells. The aim of this work was to determine the roles of such networks in response to agonists of TLRs associated with antiviral and autoimmune responses.

View Article and Find Full Text PDF
Article Synopsis
  • Endotoxin tolerance can dampen neutrophil responses to Toll-like receptor (TLR) agonists, but its specific effects on neutrophils were not well understood.
  • Prolonged exposure to lipopolysaccharide (LPS) led to tolerance, reducing certain intracellular signaling and respiratory burst activities in neutrophils, which wasn't altered by GM-CSF pretreatment.
  • Despite these changes, tolerized neutrophils continued to produce CXC chemokine ligand 8 and maintained a proinflammatory behavior, while also showing delayed apoptosis when responding to survival factors.
View Article and Find Full Text PDF

Neutrophils are amongst the first immune cells to arrive at sites of infection, where they initiate antimicrobial and proinflammatory functions, which serve to contain infection. Sensing and defeating microbial infections are daunting tasks as a result of their molecular heterogeneity; however, Toll-like receptors (TLRs) have emerged as key components of the innate-immune system, activating multiple steps in the inflammatory reaction, eliminating invading pathogens, and coordinating systemic defenses. Activated neutrophils limit infection via the phagocytosis of pathogens and by releasing antimicrobial peptides and proinflammatory cytokines and generating reactive oxygen intermediates.

View Article and Find Full Text PDF

Interactions between proinflammatory and cell maturation signals, and the pathways that regulate leukocyte migration, are of fundamental importance in controlling trafficking and recruitment of leukocytes during the processes of innate and adaptive immunity. We have investigated the molecular mechanisms by which selective Toll-like receptor (TLR)2 and TLR4 agonists regulate expression of CCR1 and CCR2 on primary human monocytes and THP-1 cells, a human monocytic cell line. We found that activation of either TLR2 (by Pam(3)CysSerLys(4)) or TLR4 (by purified LPS) resulted in down-modulation of both CCR1 and CCR2.

View Article and Find Full Text PDF

Interleukin (IL)-1 is an important mediator of acute brain injury and inflammation, and has been implicated in chronic neurodegeneration. The main source of IL-1 in the CNS is microglial cells, which have also been suggested as targets for its action. However, no data exist demonstrating expression of IL-1 receptors [IL-1 type-I receptor (IL-1RI), IL-1 type-II receptor (IL-1RII) and IL-1 receptor accessory protein (IL-1RAcP)] on microglia.

View Article and Find Full Text PDF