Publications by authors named "Lisa C Goelz"

Article Synopsis
  • The study investigates how subthalamic nucleus deep brain stimulation (STN-DBS) surgery affects cognitive aspects of motor control in people with Parkinson's disease (PD) over time.
  • Researchers compared participants' saccade latency and reach reaction time before surgery and about 8 months after surgery while off medication and stimulation.
  • Results showed that both saccade latency and reach reaction time significantly worsened post-surgery, suggesting negative long-term cognitive impacts from the surgery.
View Article and Find Full Text PDF

The motor impairments experienced by people with Parkinson's disease (PD) are exacerbated during memory-guided movements. Despite this, the effect of antiparkinson medication on memory-guided movements has not been elucidated. We evaluated the effect of antiparkinson medication on motor control during a memory-guided reaching task with short and long retention delays in participants with PD and compared performance to age-matched healthy control (HC) participants.

View Article and Find Full Text PDF

Objective: We aimed to gain further insight into previously reported beneficial effects of subthalamic nucleus deep brain stimulation (STN-DBS) on visually-guided saccades by examining the effects of unilateral compared to bilateral stimulation, paradigm, and target eccentricity on saccades in individuals with Parkinson's disease (PD).

Methods: Eleven participants with PD and STN-DBS completed the visually-guided saccade paradigms with OFF, RIGHT, LEFT, and BOTH stimulation. Rightward saccade performance was evaluated for three paradigms and two target eccentricities.

View Article and Find Full Text PDF

Background: Antiparkinson medication and subthalamic nucleus deep brain stimulation (STN-DBS), two common treatments of Parkinson's disease (PD), effectively improve skeletomotor movements. However, evidence suggests that these treatments may have differential effects on eye and limb movements, although both movement types are controlled through the parallel basal ganglia loops.

Objective: Using a task that requires both eye and upper limb movements, we aimed to determine the effects of medication and STN-DBS on eye and upper limb movement performance.

View Article and Find Full Text PDF

Background: Subthalamic nucleus deep brain stimulation (STN-DBS) improves intensive aspects of movement (velocity) in people with Parkinson's disease (PD) but impairs the more cognitively demanding coordinative aspects of movement (error). We extended these findings by evaluating STN-DBS induced changes in intensive and coordinative aspects of movement during a memory-guided reaching task with varying retention delays.

Objective: We evaluated the effect of STN-DBS on motor control during a memory-guided reaching task with short and long retention delays in participants with PD and compared performance to healthy controls (HC).

View Article and Find Full Text PDF

Objective: We examined whether previous inconsistent findings about the effect of anti-Parkinsonian medication on visually-guided saccades (VGS) were due to the use of different paradigms, which change the timing of fixation offset and target onset, or different target eccentricities.

Methods: Thirty-three participants with Parkinson's disease (PD) completed the VGS tasks OFF and ON medication, along with 13 healthy controls. Performance on 3 paradigms (gap, step, and overlap) and 2 target eccentricities was recorded.

View Article and Find Full Text PDF

Background And Objectives: Bilateral subthalamic nucleus deep brain stimulation (STN DBS) in Parkinson's disease (PD) can have detrimental effects on eye movement inhibitory control. To investigate this detrimental effect of bilateral STN DBS, we examined the effects of manipulating STN DBS amplitude on inhibitory control during the antisaccade task. The prosaccade error rate during the antisaccade task, that is, directional errors, was indicative of impaired inhibitory control.

View Article and Find Full Text PDF

People with Parkinson's disease (PD) exhibit an increase in fixational saccades during the preparatory period prior to target onset in the antisaccade task and this increase is related to an increase in prosaccade errors in the antisaccade task. It was previously shown that bilateral, but not unilateral, subthalamic nucleus deep brain stimulation (STN DBS) in people with PD further increases the prosaccade error rate on the antisaccade task. We investigated whether bilateral STN DBS also increases the number of fixational saccades in the preparatory period of the antisaccade task and if this increase in the number of fixational saccades is related to prosaccade errors.

View Article and Find Full Text PDF

Deep brain stimulation of the subthalamic nucleus (STN DBS) significantly improves clinical motor symptoms, as well as intensive aspects of movement like velocity and amplitude in patients with Parkinson's disease (PD). However, the effects of bilateral STN DBS on integrative and coordinative aspects of motor control are equivocal. The aim of this study was to investigate the effects of bilateral STN DBS on integrative and coordinative aspects of movement using a memory-guided sequential reaching task.

View Article and Find Full Text PDF

Background And Purpose: This study presents a secondary analysis from the Progressive Resistance Exercise Training in Parkinson Disease (PRET-PD) trial investigating the effects of progressive resistance exercise (PRE) and a Parkinson disease (PD)-specific multimodal exercise program, modified Fitness Counts (mFC), on spatial, temporal, and stability-related gait impairments in people with PD.

Methods: Forty-eight people with PD were randomized to participate in PRE or mFC 2 times a week for 24 months; 38 completed the study. Gait velocity, stride length, cadence, and double-support time were measured under 4 walking conditions (off-/on-medication, comfortable/fast speed).

View Article and Find Full Text PDF

Unilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) in patients with Parkinson's disease improves skeletomotor function assessed clinically, and bilateral STN DBS improves motor function to a significantly greater extent. It is unknown whether unilateral STN DBS improves oculomotor function and whether bilateral STN DBS improves it to a greater extent. Further, it has also been shown that bilateral, but not unilateral, STN DBS is associated with some impaired cognitive-motor functions.

View Article and Find Full Text PDF